Amyloid β-protein(Aβ) and Tau, two common pathogenic proteins associated with Alzheimer’s disease(AD), cross-interact, and thus co-assemble into hybrid aggregates. However, molecular mechanism of the cross-interact...Amyloid β-protein(Aβ) and Tau, two common pathogenic proteins associated with Alzheimer’s disease(AD), cross-interact, and thus co-assemble into hybrid aggregates. However, molecular mechanism of the cross-interactions remains unclear. To explore the issue, docking and molecular dynamics(MD) simulations were coupled to study the cross-interactions between Aβ pentamer and Tau pentamer. Four stable hybrid decamer conformations including double layer, single layer, block, and part-in were obtained by protein-protein docking software HADDOCK 2.2. Then, MD simulations were used to explore the molecular mechanism of cross-interactions between Aβ pentamer and Tau pentamer. The results of MD simulations showed that the part-in structure was the most stable among all the above four representative ones. The binding energy between Aβ and Tau was about-759.77 kJ·mol-1in the part-in structure. Moreover, the part-in conformation would undergo conformational transition, which would improve its hydrophobicity and make the structure more compact. This work offers a structural understanding of cross-interactions between Aβ and Tau linked to AD.展开更多
A cross-interaction phenomenon between two dc glow discharges has been observed.We have studied the feature and variation regularty of the cross-interaction. A part of results arepresented in this paper.
Fifty-three samples of multi-substituted benzylideneanilines XArCH=NArYs (abbreviated XBAYs) were synthesized and their NMR spectra were determined. An extensional study of substituent effects on the 1H NMR chemical...Fifty-three samples of multi-substituted benzylideneanilines XArCH=NArYs (abbreviated XBAYs) were synthesized and their NMR spectra were determined. An extensional study of substituent effects on the 1H NMR chemical shifts (δH(CH=N)) and 13C NMR chemical shifts (δc(CH=N)) of the CH=N bridging group from di-substituted to multi-substituted XBAYs was made based on a total of 182 samples of XBAYs, together with the NMR data of other 129 samples of di-substituted XBAYs quoted from literatures. The results show thatthe substituent specific cross-interaction effect parameter (△(∑σ)2) plays an important role in quantifying the δc(CH=N) values of XBAYs, but it is negligible for quantifying the δH (CH=N) values; the other substituent parameters also present different influences on the δc (CH=N) and (δH (CH=N). On the whole, the contributions of X and Y to the δc (CH=N) of XBAYs are balanced, but the δH(CH=N) values of XBAYs mainly rely on the contributions of X.展开更多
A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morpholog...A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morphology of interfacial intermetallic compound(IMC)in Cu/Sn/Ni micro-joints during both SLID and TG-SLID bonding and in the final Cu/(Cu,Ni)_(6)Sn_(5)/Ni full IMC micro-joints were analyzed.Under the effect of Cu-Ni cross-interaction,interfacial(Cu,Ni)_(6)Sn_(5) dominated the IMC growth at all the interfaces.The morphology of the(Cu,Ni)_(6)Sn_(5) grains was closely related to Ni content with three levels of low,medium and high.The full IMC micro-joints consisted of L-(Cu,Ni)_(6) Sn_(5),M-(Cu,Ni)_(6)Sn_(5) and H-(Cu,Ni)_(6)Sn_(5) grains after SLID bonding or TG-SLID bonding with Ni as hot end,while only L-(Cu,Ni)_(6)Sn_(5) grains after TG-SLID bonding with Cu as hot end,showing that the direction of TG had a remarkably effect on the growth and morphology of the interfacial(Cu,Ni)_(6)Sn_(5) during TG-SLID bonding.Thermodynamic analysis revealed the key molar latent heat and critical Ni content between fine-rounded-like(Cu,Ni)_(6)Sn_(5) and block-like(Cu,Ni)_(6)Sn_(5) were 17,725.4 J and 11.0 at.%at 260℃,respectively.Moreover,the growth kinetic of the interfacial IMC was analyzed in detail during bonding with and without TG.Under the combination of TG and Cu-Ni cross-interaction,void-free full IMC micro-joints were fast formed by TG-SLID bonding with Cu as hot end.This bonding method may present a feasible solution to solve the problems of low formation efficiency and inevitable Cu_(3) Sn growth of full IMC joints for 3 D packaging applications.展开更多
基金funded by the National Natural Science Foundation of China (21908165 and 21878234)Regional Innovation System Project (21ZYQCSY00050)。
文摘Amyloid β-protein(Aβ) and Tau, two common pathogenic proteins associated with Alzheimer’s disease(AD), cross-interact, and thus co-assemble into hybrid aggregates. However, molecular mechanism of the cross-interactions remains unclear. To explore the issue, docking and molecular dynamics(MD) simulations were coupled to study the cross-interactions between Aβ pentamer and Tau pentamer. Four stable hybrid decamer conformations including double layer, single layer, block, and part-in were obtained by protein-protein docking software HADDOCK 2.2. Then, MD simulations were used to explore the molecular mechanism of cross-interactions between Aβ pentamer and Tau pentamer. The results of MD simulations showed that the part-in structure was the most stable among all the above four representative ones. The binding energy between Aβ and Tau was about-759.77 kJ·mol-1in the part-in structure. Moreover, the part-in conformation would undergo conformational transition, which would improve its hydrophobicity and make the structure more compact. This work offers a structural understanding of cross-interactions between Aβ and Tau linked to AD.
基金863(863-715-23-07) and Nuclear Foundation (H7196C0308).
文摘A cross-interaction phenomenon between two dc glow discharges has been observed.We have studied the feature and variation regularty of the cross-interaction. A part of results arepresented in this paper.
基金supported by the National Natural Science Foundation of China(No.21672058 and No.21272063)
文摘Fifty-three samples of multi-substituted benzylideneanilines XArCH=NArYs (abbreviated XBAYs) were synthesized and their NMR spectra were determined. An extensional study of substituent effects on the 1H NMR chemical shifts (δH(CH=N)) and 13C NMR chemical shifts (δc(CH=N)) of the CH=N bridging group from di-substituted to multi-substituted XBAYs was made based on a total of 182 samples of XBAYs, together with the NMR data of other 129 samples of di-substituted XBAYs quoted from literatures. The results show thatthe substituent specific cross-interaction effect parameter (△(∑σ)2) plays an important role in quantifying the δc(CH=N) values of XBAYs, but it is negligible for quantifying the δH (CH=N) values; the other substituent parameters also present different influences on the δc (CH=N) and (δH (CH=N). On the whole, the contributions of X and Y to the δc (CH=N) of XBAYs are balanced, but the δH(CH=N) values of XBAYs mainly rely on the contributions of X.
基金financially supported by the National Natural Science Foundation of China(No.52075072)the Fundamental Research Funds for the Central Universities(No.DUT20JC46)。
文摘A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morphology of interfacial intermetallic compound(IMC)in Cu/Sn/Ni micro-joints during both SLID and TG-SLID bonding and in the final Cu/(Cu,Ni)_(6)Sn_(5)/Ni full IMC micro-joints were analyzed.Under the effect of Cu-Ni cross-interaction,interfacial(Cu,Ni)_(6)Sn_(5) dominated the IMC growth at all the interfaces.The morphology of the(Cu,Ni)_(6)Sn_(5) grains was closely related to Ni content with three levels of low,medium and high.The full IMC micro-joints consisted of L-(Cu,Ni)_(6) Sn_(5),M-(Cu,Ni)_(6)Sn_(5) and H-(Cu,Ni)_(6)Sn_(5) grains after SLID bonding or TG-SLID bonding with Ni as hot end,while only L-(Cu,Ni)_(6)Sn_(5) grains after TG-SLID bonding with Cu as hot end,showing that the direction of TG had a remarkably effect on the growth and morphology of the interfacial(Cu,Ni)_(6)Sn_(5) during TG-SLID bonding.Thermodynamic analysis revealed the key molar latent heat and critical Ni content between fine-rounded-like(Cu,Ni)_(6)Sn_(5) and block-like(Cu,Ni)_(6)Sn_(5) were 17,725.4 J and 11.0 at.%at 260℃,respectively.Moreover,the growth kinetic of the interfacial IMC was analyzed in detail during bonding with and without TG.Under the combination of TG and Cu-Ni cross-interaction,void-free full IMC micro-joints were fast formed by TG-SLID bonding with Cu as hot end.This bonding method may present a feasible solution to solve the problems of low formation efficiency and inevitable Cu_(3) Sn growth of full IMC joints for 3 D packaging applications.