In order to predict the storage life of a certain type of HTPB(hydroyl-terminated polybutadiene)coating at 25℃ and analyze the influence of pre-strain on the storage life,the accelerated aging tests of HTPB coating a...In order to predict the storage life of a certain type of HTPB(hydroyl-terminated polybutadiene)coating at 25℃ and analyze the influence of pre-strain on the storage life,the accelerated aging tests of HTPB coating at 40℃,50℃,60℃,70℃ with the pre-strain of 0%,3%,6%,9%,respectively were carried out.The variation regularity of the change of crosslinking density was analyzed and the aging model of HTPB coating under pre-strained thermally-accelerated aging was proposed.The storage life of HTPB coating at 25℃ was estimated by using the Berthelot equation as the end point of the aging life with a 30% decrease in maximum elongation.The results showed that the change of crosslinking density of HTPB coating increased with the increase of aging temperature and aging time,and decreased with the increase of pre-strain.Under 0% prestrain,the relationship between the change of crosslinking density of HTPB coating and the aging time can be described by the logarithmic model with the confidence probability greater than 99%.The stress relaxation phenomenon existed under 3%,6%and 9%pre-strained aging.The aging model considering chemical aging and pre-strain was established with the confidence probability greater than 90%.The storage life of HTPB coating was 15.2935 years at 25C under 0% prestrain,which was reduced by 13.9007%,75.6949% and 89.7859% under 3%,6% and 9% pre-strain,respectively.The existence of pre-strain has a serious impact on the storage life of HTPB coating,therefore,the pre-strain should be avoided as much as possible during the actual storage.展开更多
The transfer of graphene from metallic substrates onto application-specific substrates is usually inevitable for the applications of high-quality graphene films derived from chemical vapour deposition(CVD)approaches.C...The transfer of graphene from metallic substrates onto application-specific substrates is usually inevitable for the applications of high-quality graphene films derived from chemical vapour deposition(CVD)approaches.Commonly used to support the graphene films during the transfer,the coating of the polymer would produce the surface contaminations and hinder the industrially compatible transfer.In this work,through the thermal imidization of polyamide acid(PAA)to polyimide(PI)and tuning of the concentration of dangling chains,we achieved the ultraclean and crack-free transfer of graphene wafers with high electronic quality.The resulting contamination-free and hydrophilic surface also enabled the observed improved cell viability in a biomedical applications.By avoiding aqueous etching or the usage of strong bases,our proposed transfer method is industrially compatible for batch transfer of graphene films towards the real applications.展开更多
基金This work was supported by the National Defense Pre-Research Projects[grant number ZS2015070132A12002].
文摘In order to predict the storage life of a certain type of HTPB(hydroyl-terminated polybutadiene)coating at 25℃ and analyze the influence of pre-strain on the storage life,the accelerated aging tests of HTPB coating at 40℃,50℃,60℃,70℃ with the pre-strain of 0%,3%,6%,9%,respectively were carried out.The variation regularity of the change of crosslinking density was analyzed and the aging model of HTPB coating under pre-strained thermally-accelerated aging was proposed.The storage life of HTPB coating at 25℃ was estimated by using the Berthelot equation as the end point of the aging life with a 30% decrease in maximum elongation.The results showed that the change of crosslinking density of HTPB coating increased with the increase of aging temperature and aging time,and decreased with the increase of pre-strain.Under 0% prestrain,the relationship between the change of crosslinking density of HTPB coating and the aging time can be described by the logarithmic model with the confidence probability greater than 99%.The stress relaxation phenomenon existed under 3%,6%and 9%pre-strained aging.The aging model considering chemical aging and pre-strain was established with the confidence probability greater than 90%.The storage life of HTPB coating was 15.2935 years at 25C under 0% prestrain,which was reduced by 13.9007%,75.6949% and 89.7859% under 3%,6% and 9% pre-strain,respectively.The existence of pre-strain has a serious impact on the storage life of HTPB coating,therefore,the pre-strain should be avoided as much as possible during the actual storage.
基金supported by the National Natural Science Foundation of China(Nos.T2188101 and 52372038)the National Key Research and Development Program of China(No.2022YFA1204900)the China Postdoctoral Science Foundation(No.2023M740030).
文摘The transfer of graphene from metallic substrates onto application-specific substrates is usually inevitable for the applications of high-quality graphene films derived from chemical vapour deposition(CVD)approaches.Commonly used to support the graphene films during the transfer,the coating of the polymer would produce the surface contaminations and hinder the industrially compatible transfer.In this work,through the thermal imidization of polyamide acid(PAA)to polyimide(PI)and tuning of the concentration of dangling chains,we achieved the ultraclean and crack-free transfer of graphene wafers with high electronic quality.The resulting contamination-free and hydrophilic surface also enabled the observed improved cell viability in a biomedical applications.By avoiding aqueous etching or the usage of strong bases,our proposed transfer method is industrially compatible for batch transfer of graphene films towards the real applications.