In this paper,we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems. It is proved that the semi-discrete mortar upwind ...In this paper,we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems. It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H^1-and L^2-norms.展开更多
The main aim of this paper is to study the approximation to viscoelasticity type equations with a Crouzeix-Raviart type nonconforming finite element on the anisotropic meshes. The superclose property of the exact solu...The main aim of this paper is to study the approximation to viscoelasticity type equations with a Crouzeix-Raviart type nonconforming finite element on the anisotropic meshes. The superclose property of the exact solution and the optimal error estimate of its derivative with respect to time are derived by using some novel techniques. Moreover, employing a postprocessing technique, the global superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself is studied.展开更多
A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the v...A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.展开更多
In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N<...In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N</em> ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method.展开更多
In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element meth- ods are considered for solving the second order variational inequality with displacement obstacle. The convergence analysis is presen...In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element meth- ods are considered for solving the second order variational inequality with displacement obstacle. The convergence analysis is presented and the optimal order error estimates are obtained under the hypothesis of the finite length of the free boundary. Numerical results are provided to illustrate the correctness of theoretical analysis.展开更多
Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, ...Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, while divergence-free mixed finite elements de- liver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modi- fied Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H1 ve- locity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure- independent L2 velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.展开更多
文摘In this paper,we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems. It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H^1-and L^2-norms.
基金This research is supported by the NSF of China (10371113 10471133),SF of Henan ProvinceSF of Education Committee of Henan Province (2006110011)
文摘The main aim of this paper is to study the approximation to viscoelasticity type equations with a Crouzeix-Raviart type nonconforming finite element on the anisotropic meshes. The superclose property of the exact solution and the optimal error estimate of its derivative with respect to time are derived by using some novel techniques. Moreover, employing a postprocessing technique, the global superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself is studied.
基金supported by the National Natural Science Foundation of China (Nos. 10971203 and 11271340)the Research Fund for the Doctoral Program of Higher Education of China (No. 20094101110006)
文摘A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.
文摘In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N</em> ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method.
文摘In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element meth- ods are considered for solving the second order variational inequality with displacement obstacle. The convergence analysis is presented and the optimal order error estimates are obtained under the hypothesis of the finite length of the free boundary. Numerical results are provided to illustrate the correctness of theoretical analysis.
文摘Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, while divergence-free mixed finite elements de- liver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modi- fied Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H1 ve- locity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure- independent L2 velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.