Eucalyptus forests are grown in many parts of the world for their commercial value and use in construction projects. Density management becomes im- portant as a means to attain the management goals in these forests. C...Eucalyptus forests are grown in many parts of the world for their commercial value and use in construction projects. Density management becomes im- portant as a means to attain the management goals in these forests. Changes in canopy and tree crown structure were quantified for Eucalyptus urophylla x E. grandis forests at different ages to determine when canopy closure occurs and the onset of competition begins. Site index was developed for these forests to determine whether site quality affects the canopy structure. Site index had little effect in the forests sampled, with the forest canopy on the better sites becoming slightly more elongated. Based upon crown projection ratio and crown diameter: dbh (diameter at breast height) ratio, it appears that crown closure occurs by age 4 years in these forests. The age at which this occurs was also checked and verified with the evaluation of relative spacing, RS (the ratio of the mean distance between trees to the average dominant height of the stand). The RS value displayed a rapid decline until age 4 years, and then became relatively flat through age 21 years. The rapid height growth during the first 3 years with no change in density accounted for this rapid decrease. By age 4 years, reductions in the number of trees due to mortality began to have more of an influence on this value, resulting in a more gradual de- cline. The implications for management are discussed.展开更多
Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required abo...Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required about the acclimation of the crown and its effects on the basal area growth of trees at the edge of a gap.Methods This work compared trees'growth and crown structure at the edge of a transient gap,with a gap size of more than 80m^(2),with trees in the stand that were at least 30m away from the gap.A total of 249 European beeches(Fagus sylvatica L.),Norway spruces(Picea abies L.Karst),Scots pines(Pinus sylvestris L.),oaks(Quercus spp.;Quercus petraea(Matt.)Liebl.,Quercus robur L.),and silver firs(Abies alba Mill.)were examined on long-term experimental plots in southern Germany.Various crown measures were developed and calculated using high-resolution terrestrial laser scanning(TLiDAR)to capture the three-dimensional crown structures.Growth responses to edge conditions were measured based on tree rings.Using linear mixed models,we predict the basal area increment of edge trees relative to trees in the stand under wet and dry soil moisture conditions after the gap formation.Results We identified i)species-specific acclimation of the crown of edge trees after the gap formation,ii)under wet soil moisture conditions a growth increase of 25%–45%for beech,pine,and oak edge trees and growth losses of 5%–60%for spruce and fir and iii)coniferous tree species benefited from the edge position regarding their basal area increment under dry soil moisture conditions and deciduous tree species grew regardless of the soil moisture conditions at the edge of a gap.Conclusion Gaps have a species-specific effect on the habitus and growth of edge trees and can have both positive and negative impacts on silviculture.展开更多
基金Supported by Undergraduate Research Abroad Program,Ohio State University,USA(11731-011000)~~
文摘Eucalyptus forests are grown in many parts of the world for their commercial value and use in construction projects. Density management becomes im- portant as a means to attain the management goals in these forests. Changes in canopy and tree crown structure were quantified for Eucalyptus urophylla x E. grandis forests at different ages to determine when canopy closure occurs and the onset of competition begins. Site index was developed for these forests to determine whether site quality affects the canopy structure. Site index had little effect in the forests sampled, with the forest canopy on the better sites becoming slightly more elongated. Based upon crown projection ratio and crown diameter: dbh (diameter at breast height) ratio, it appears that crown closure occurs by age 4 years in these forests. The age at which this occurs was also checked and verified with the evaluation of relative spacing, RS (the ratio of the mean distance between trees to the average dominant height of the stand). The RS value displayed a rapid decline until age 4 years, and then became relatively flat through age 21 years. The rapid height growth during the first 3 years with no change in density accounted for this rapid decrease. By age 4 years, reductions in the number of trees due to mortality began to have more of an influence on this value, resulting in a more gradual de- cline. The implications for management are discussed.
基金funded by the Bavarian Ministry of Nutrition,Agriculture and Forestry through the projects“Acclimation of Forest Trees”(grant#kliffw006)“Maintenance and Monitoring of long term experiments”(W007,grant#Gz:7831-1/874).
文摘Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required about the acclimation of the crown and its effects on the basal area growth of trees at the edge of a gap.Methods This work compared trees'growth and crown structure at the edge of a transient gap,with a gap size of more than 80m^(2),with trees in the stand that were at least 30m away from the gap.A total of 249 European beeches(Fagus sylvatica L.),Norway spruces(Picea abies L.Karst),Scots pines(Pinus sylvestris L.),oaks(Quercus spp.;Quercus petraea(Matt.)Liebl.,Quercus robur L.),and silver firs(Abies alba Mill.)were examined on long-term experimental plots in southern Germany.Various crown measures were developed and calculated using high-resolution terrestrial laser scanning(TLiDAR)to capture the three-dimensional crown structures.Growth responses to edge conditions were measured based on tree rings.Using linear mixed models,we predict the basal area increment of edge trees relative to trees in the stand under wet and dry soil moisture conditions after the gap formation.Results We identified i)species-specific acclimation of the crown of edge trees after the gap formation,ii)under wet soil moisture conditions a growth increase of 25%–45%for beech,pine,and oak edge trees and growth losses of 5%–60%for spruce and fir and iii)coniferous tree species benefited from the edge position regarding their basal area increment under dry soil moisture conditions and deciduous tree species grew regardless of the soil moisture conditions at the edge of a gap.Conclusion Gaps have a species-specific effect on the habitus and growth of edge trees and can have both positive and negative impacts on silviculture.