期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Tracking control for air-breathing hypersonic cruise vehicle based on tangent linearization approach 被引量:7
1
作者 Guangbin Cai Guangren Duan +1 位作者 Changhua Hu Bin Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期469-475,共7页
This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly cha... This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results. 展开更多
关键词 hypersonic cruise vehicles tangent linearization tracking control nonlinear control.
下载PDF
Robust parametric approach for tracking control of an air-breathing hypersonic cruise vehicle
2
作者 蔡光斌 段广仁 +1 位作者 胡昌华 谭峰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期58-64,共7页
To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furtherm... To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach. 展开更多
关键词 hypersonic cruise vehicle robust parametric approach tracking control eigenstructure assignment parameter optimization
下载PDF
Optimal speed of hypersonic cruise flight
3
作者 Jing Fan~(a)) Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences, Beijing 100190,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第1期50-52,共3页
A coupling frame of speed gain and maintain was suggested to assess the flight performance of hypersonic cruise vehicles(HCV).The optimal cruise speed was obtained by analyzing the flight performance measured by the r... A coupling frame of speed gain and maintain was suggested to assess the flight performance of hypersonic cruise vehicles(HCV).The optimal cruise speed was obtained by analyzing the flight performance measured by the ratio of initial boost mass to generalized payload.The performance of HCVs based on rockets and air-breathing ramjets was studied and compared to that of a minimum-energy ballistic trajectory under a certain flight distance.It is concluded that rocket-based HCVs flying at the optimal speed are a very competitive choice at the current stage. 展开更多
关键词 hypersonic cruise vehicle flight performance optimal cruise speed
下载PDF
A Modified Oppositional Chaotic Local Search Strategy Based Aquila Optimizer to Design an Effective Controller for Vehicle Cruise Control System 被引量:1
4
作者 Serdar Ekinci Davut Izci +1 位作者 Laith Abualigah Raed Abu Zitar 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1828-1851,共24页
In this work,we propose a real proportional-integral-derivative plus second-order derivative(PIDD2)controller as an efficient controller for vehicle cruise control systems to address the challenging issues related to ... In this work,we propose a real proportional-integral-derivative plus second-order derivative(PIDD2)controller as an efficient controller for vehicle cruise control systems to address the challenging issues related to efficient operation.In this regard,this paper is the first report in the literature demonstrating the implementation of a real PIDD2 controller for controlling the respective system.We construct a novel and efficient metaheuristic algorithm by improving the performance of the Aquila Optimizer via chaotic local search and modified opposition-based learning strategies and use it as an excellently performing tuning mechanism.We also propose a simple yet effective objective function to increase the performance of the proposed algorithm(CmOBL-AO)to adjust the real PIDD2 controller's parameters effectively.We show the CmOBL-AO algorithm to perform better than the differential evolution algorithm,gravitational search algorithm,African vultures optimization,and the Aquila Optimizer using well-known unimodal,multimodal benchmark functions.CEC2019 test suite is also used to perform ablation experiments to reveal the separate contributions of chaotic local search and modified opposition-based learning strategies to the CmOBL-AO algorithm.For the vehicle cruise control system,we confirm the more excellent performance of the proposed method against particle swarm,gray wolf,salp swarm,and original Aquila optimizers using statistical,Wilcoxon signed-rank,time response,robustness,and disturbance rejection analyses.We also use fourteen reported methods in the literature for the vehicle cruise control system to further verify the more promising performance of the CmOBL-AO-based real PIDD2 controller from a wider perspective.The excellent performance of the proposed method is also illustrated through different quality indicators and different operating speeds.Lastly,we also demonstrate the good performing capability of the CmOBL-AO algorithm for real traffic cases.We show the CmOBL-AO-based real PIDD2 controller as the most efficient method to control a vehicle cruise control system. 展开更多
关键词 Aquila optimizer Chaotic local search Modified opposition-based learning Real PIDD^(2)controller vehicle cruise control system Bionic engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部