Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protoli...Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protolith) to disorder (melts) and to new order(granite) with the variations of entropy of the system.The various geological and geochemi-cal data from the Mesozoic granitesof southeast China are explained logically and systemical-ly by the hypothesis,concluding that they should be originated from the melting of pro-toliths.According to the hypothesis,melts generated from in- situ melting are of layer- likewithin the crustand batholithsare the protruding parts of the uppersurface of the layer (de-fined as the Melting Interface,MI for short) .On the basis the author tries to discuss thesource of heatfor the Mesozoic crustal melting in southeast China.展开更多
The height changes of tide gauges directly influence sea level observation. For research of sea level variation in large region or globe, the land vertical displacement must be considered. Two sessions of GPS and abso...The height changes of tide gauges directly influence sea level observation. For research of sea level variation in large region or globe, the land vertical displacement must be considered. Two sessions of GPS and absolute gravity observations in 2001 and 2003 are used to determine the horizontal and vertical motion of China coast in ITRF2000 and Eurasia frame. The difference between results of continuous observation and periodic observation is discussed.展开更多
The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area ...The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area and LA-ICP MS zircon U-Pb dating of Paleozoic and Mesozoic magmatisms of granitoids in the basement of the eastern Qaidam Basin on the basis of 16 granitoid samples collected from the South Qilian Mountains, the Qaidam Basin basement and the East Kunlun Mountains. According to the results in this paper, the basement of the basin, from the northern margin of the Qaidam Basin to the East Kunlun Mountains, has experienced at least three periods of intrusive activities of granitoids since the Early Paleozoic, i.e. the magmatisms occurring in the Late Cambrian (493.1±4.9 Ma), the Silurian (422.9±8.0 Ma-420.4±4.6 Ma) and the Late Permian-Middle Triassic (257.8±4.0 Ma-228.8+1.5 Ma), respectively. Among them, the Late Permian - Middle Triassic granitoids form the main components of the basement of the basin. The statistics of dated zircons in this paper shows the intrusive magmatic activities in the basement of the basin have three peak ages of 244 Ma (main), 418 Ma, and 493 Ma respectively. The dating results reveal that the Early Paleozoic magmatism of granitoids mainly occurred on the northern margin of the Qaidam Basin and the southern margin of the Qilian Mountains, with only weak indications in the East Kunlun Mountains. However, the distribution of Permo-Triassic (P-T) granitoids occupied across the whole basement of the eastern Qaidam Basin from the southern margin of the Qilian Mountains to the East Kunlun Mountains. An integrated analysis of the age distribution of P-T granitoids in the Qaidam Basin and its surrounding mountains shows that the earliest P-T magmatism (293.6-270 Ma) occurred in the northwestern part of the basin and expanded eastwards and southwards, resulting in the P-T intrusive magmatism that ran through the whole basin basement. As the Cenozoic basement thrust system developed in the eastern Qaidam Basin, the nearly N-S-trending shortening and deformation in the basement of the basin tended to intensify from west to east, which went contrary to the distribution trend of N-S-trending shortening and deformation in the Cenozoic cover of the basin, reflecting that there was a transformation of shortening and thickening of Cenozoic crust between the eastern and western parts of the Qaidam Basin, i.e., the crustal shortening of eastern Qaidam was dominated by the basement deformation (triggered at the middle and lower crust), whereas that of western Qaidam was mainly by folding and thrusting of the sedimentary cover (the upper crust).展开更多
The paper of Shen et al., entitled "Surveying of the deformed terraces and crust shortening rate in the northwest Tarim Basin", was published in Chinese Science Bulletin (Vol. 46, No. 12). Shen et al. found ...The paper of Shen et al., entitled "Surveying of the deformed terraces and crust shortening rate in the northwest Tarim Basin", was published in Chinese Science Bulletin (Vol. 46, No. 12). Shen et al. found the deformation of Late Pleistocene to Holocene terraces of the Boguzi River across the Artushi Anticline in the northwest Tarim Basin close to the Pamir, and made level survey and differential GPS measurement, which is of great importance to geodynamics for research on the coupling of Tianshan Mountains uplifting and Tarim Basin depression. But their understanding to the deformation mechanics of terraces and the calculation methods of crustal shortening are open to discussion. Therefore, we discuss it with Shen Jun et al.展开更多
文摘Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protolith) to disorder (melts) and to new order(granite) with the variations of entropy of the system.The various geological and geochemi-cal data from the Mesozoic granitesof southeast China are explained logically and systemical-ly by the hypothesis,concluding that they should be originated from the melting of pro-toliths.According to the hypothesis,melts generated from in- situ melting are of layer- likewithin the crustand batholithsare the protruding parts of the uppersurface of the layer (de-fined as the Melting Interface,MI for short) .On the basis the author tries to discuss thesource of heatfor the Mesozoic crustal melting in southeast China.
文摘The height changes of tide gauges directly influence sea level observation. For research of sea level variation in large region or globe, the land vertical displacement must be considered. Two sessions of GPS and absolute gravity observations in 2001 and 2003 are used to determine the horizontal and vertical motion of China coast in ITRF2000 and Eurasia frame. The difference between results of continuous observation and periodic observation is discussed.
基金supports by the Basic Research Foundation of the Institute of Geomechanics,CAGS,China (DZLXJK200703)the National Natural Science Foundation of China(40342015)+1 种基金SinoProbe-Deep Exploration in China(SinoProbe-08)the National Science Foundation(USA) Instrumentation and Facilities Program (EAR-0443387)
文摘The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area and LA-ICP MS zircon U-Pb dating of Paleozoic and Mesozoic magmatisms of granitoids in the basement of the eastern Qaidam Basin on the basis of 16 granitoid samples collected from the South Qilian Mountains, the Qaidam Basin basement and the East Kunlun Mountains. According to the results in this paper, the basement of the basin, from the northern margin of the Qaidam Basin to the East Kunlun Mountains, has experienced at least three periods of intrusive activities of granitoids since the Early Paleozoic, i.e. the magmatisms occurring in the Late Cambrian (493.1±4.9 Ma), the Silurian (422.9±8.0 Ma-420.4±4.6 Ma) and the Late Permian-Middle Triassic (257.8±4.0 Ma-228.8+1.5 Ma), respectively. Among them, the Late Permian - Middle Triassic granitoids form the main components of the basement of the basin. The statistics of dated zircons in this paper shows the intrusive magmatic activities in the basement of the basin have three peak ages of 244 Ma (main), 418 Ma, and 493 Ma respectively. The dating results reveal that the Early Paleozoic magmatism of granitoids mainly occurred on the northern margin of the Qaidam Basin and the southern margin of the Qilian Mountains, with only weak indications in the East Kunlun Mountains. However, the distribution of Permo-Triassic (P-T) granitoids occupied across the whole basement of the eastern Qaidam Basin from the southern margin of the Qilian Mountains to the East Kunlun Mountains. An integrated analysis of the age distribution of P-T granitoids in the Qaidam Basin and its surrounding mountains shows that the earliest P-T magmatism (293.6-270 Ma) occurred in the northwestern part of the basin and expanded eastwards and southwards, resulting in the P-T intrusive magmatism that ran through the whole basin basement. As the Cenozoic basement thrust system developed in the eastern Qaidam Basin, the nearly N-S-trending shortening and deformation in the basement of the basin tended to intensify from west to east, which went contrary to the distribution trend of N-S-trending shortening and deformation in the Cenozoic cover of the basin, reflecting that there was a transformation of shortening and thickening of Cenozoic crust between the eastern and western parts of the Qaidam Basin, i.e., the crustal shortening of eastern Qaidam was dominated by the basement deformation (triggered at the middle and lower crust), whereas that of western Qaidam was mainly by folding and thrusting of the sedimentary cover (the upper crust).
基金This work was supported by the National Natural Science Foundation of China (Grant No. 49832040).
文摘The paper of Shen et al., entitled "Surveying of the deformed terraces and crust shortening rate in the northwest Tarim Basin", was published in Chinese Science Bulletin (Vol. 46, No. 12). Shen et al. found the deformation of Late Pleistocene to Holocene terraces of the Boguzi River across the Artushi Anticline in the northwest Tarim Basin close to the Pamir, and made level survey and differential GPS measurement, which is of great importance to geodynamics for research on the coupling of Tianshan Mountains uplifting and Tarim Basin depression. But their understanding to the deformation mechanics of terraces and the calculation methods of crustal shortening are open to discussion. Therefore, we discuss it with Shen Jun et al.