The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter...The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.展开更多
The overuse and ineffective management of plastics have led to significant environmental pollution. Catalytic upcycling into value-added chemicals has emerged as a promising solution. This review provides a comprehens...The overuse and ineffective management of plastics have led to significant environmental pollution. Catalytic upcycling into value-added chemicals has emerged as a promising solution. This review provides a comprehensive overview of recent advances in catalytic upcycling, focusing on the cleavage of chemical bonds such as carbon-carbon (C-C), carbon-oxygen (C-O), and carbon-hydrogen (C-H) in plastics. It systematically discusses plastics conversion via electrocatalysis, thermal catalysis, and photocatalysis. Additionally, it explores the conversion of plastics into value-added chemicals and functional polymers. The review also addresses the challenges in this field and aims to offer insights for developing sustainable and effective plastics upcycling technologies.展开更多
Direct recycling is a novel approach to overcoming the drawbacks of conventional lithium-ion battery(LIB)recycling processes and has gained considerable attention from the academic and industrial sectors in recent yea...Direct recycling is a novel approach to overcoming the drawbacks of conventional lithium-ion battery(LIB)recycling processes and has gained considerable attention from the academic and industrial sectors in recent years.The primary objective of directly recycling LIBs is to efficiently recover and restore the active electrode materials and other components in the solid phase while retaining electrochemical performance.This technology's advantages over traditional pyrometallurgy and hydrometallurgy are costeffectiveness,energy efficiency,and sustainability,and it preserves the material structure and morphology and can shorten the overall recycling path.This review extensively discusses the advancements in the direct recycling of LIBs,including battery sorting,pretreatment processes,separation of cathode and anode materials,and regeneration and quality enhancement of electrode materials.It encompasses various approaches to successfully regenerate high-value electrode materials and streamlining the recovery process without compromising their electrochemical properties.Furthermore,we highlight key challenges in direct recycling when scaled from lab to industries in four perspectives:(1)battery design,(2)disassembling,(3)electrode delamination,and(4)commercialization and sustainability.Based on these challenges and changing market trends,a few strategies are discussed to aid direct recycling efforts,such as binders,electrolyte selection,and alternative battery designs;and recent transitions and technological advancements in the battery industry are presented.展开更多
In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower ...In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower is the largest structure in the world with an onsite water recycling system.Built by the Australian com-pany Aquacell(Milton,NSW,Australia),the system cleans 113 m^(3)of sewage,sink,shower,and other wastewater each day for use in irrigation and flushing toilets,saving an estimated 35000 m?of water anmually[1].The building is just one of dozens in San Fran-cisco outitted with their own water recycling systems,thanks to a city mandate enacted in 2015[1].展开更多
Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 7,July 2024,Page 1554 https://doi.org/10.1007/s12613-024-2907-7 In this article,affiliation 1 has been erroneously given as Depart...Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 7,July 2024,Page 1554 https://doi.org/10.1007/s12613-024-2907-7 In this article,affiliation 1 has been erroneously given as Department of Materials Science and Engineering,Seoul 03722,Korea.展开更多
Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditi...Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.展开更多
The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant c...The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field.展开更多
Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious an...Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.展开更多
The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar co...The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC).展开更多
Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of th...Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs,starting with lithium-ion power batteries.Recent research on raw material collection,metallurgical recovery,separation and purification is highlighted,particularly in terms of all aspects of economic efficiency,energy consumption,technology transformation and policy management.Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored,revealing a clean and efficient closed-loop recovery mechanism.Optimization methods are proposed for future recycling technologies,with a focus on how future research directions can be industrialized.Ultimately,based on life-cycle assessment,the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies.This work is designed to support the sustainable development of the new energy power industry,to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling.展开更多
Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,...Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.展开更多
Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roastin...Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.展开更多
The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycli...The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.展开更多
The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study foc...The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study focused on the chemical reductive discoloration of textile waste composed of cotton dyed with reactive dye.The experimental design demonstrated the significant influence of the concentration of reducing agent and time of reaction on the degree of whiteness of the cotton fibers.The concentration of the alkaline agent was not significant in the process.The optimization of the reaction conditions lead to Berger degree of 50.5±3.5.The discolored cotton was chemically recycled through dissolution in ionic liquid 1-ethyl-3-methylimidazolium chloride and regeneration in film form in water.The microstructure of the regenerated cellulose films was evaluated by Scanning Electron Microscopy(SEM)indicating complete dissolution and uniform regeneration.The discoloration process reduced the polymerization degree and crystallinity index of the cotton fibers but retained the cellulose I structure.The dissolution and cellulose regeneration process results in transparent films with an amorphous structure.The thermal behavior,evaluated by thermogravimetric analysis,indicated that residues and regenerated film presented a main decomposition step.The maximum decomposition rate temperature of the regenerated films was approximately 40℃lower than the cotton fibers,which correlates well with the reduction in polymerization degree and amorphous structure.In general,the study demonstrated that textile cotton waste dyed with reactive dyes can be chemically discolored to form transparent and amorphous films,contributing to the development of sustainable strategies for the textile industry.展开更多
The aim of this study was to determine the quality of rebar produced from recycled scrap metal collected throughout the country,and imported rebar sold in the Republic of Guinea.To do this,the samples were subjected t...The aim of this study was to determine the quality of rebar produced from recycled scrap metal collected throughout the country,and imported rebar sold in the Republic of Guinea.To do this,the samples were subjected to various mechanical tests involving traction,bending and microscopic analysis.In the Lambanyi and Casse Sonfonia samples,all the tensile strength values for diameters 12,14 and 16 were above 550 MPa.Conversely,the iron samples from Baillobaye and the 10 mm diameters of the samples from Casse Sonfonio and Lambanyi have less appreciable values.The limits of elasticity were determined.The various values found vary more or less from the conventional yield strength of the NF A35-016 reference supplied by CBITEC,which is 500 MPa.Microscopic analysis gives us an insight into the internal structure of the iron samples used.This study may provide the company and the vendors with an alternative for their improvements.展开更多
This paper introduces an intelligent waste recycling automatic classification system,which integrates sensors,image recognition,and robotic arms to achieve automatic identification and classification of waste.The syst...This paper introduces an intelligent waste recycling automatic classification system,which integrates sensors,image recognition,and robotic arms to achieve automatic identification and classification of waste.The system monitors the composition and properties of waste in real time through sensors,and uses image recognition technology for precise classification,and the robotic arm is responsible for grabbing and disposing.The design and implementation of the system have important practical significance and application value,and help promote the popularization and standardization of waste classification.This paper details the system s architecture,module division,sensors and recognition technology,robotic arm and grabbing technology,data processing and control system,and testing and optimization process.Experimental results show that the system has efficient waste recycling efficiency and accuracy in practical applications,bringing new development opportunities to the waste recycling industry.展开更多
Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacita...Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacitance,durability,and safety.However,such widespread use implies the generation of large amounts of electronic waste.It is estimated that more than 11 million ton of LIBs waste will have been generated by 2030.Battery recycling can contribute to minimizing environmental contamination and reducing production costs through the recovery of high-value raw materials such as lithium,cobalt,and nickel.The most common processes used to recycle spent LIBs are pyrometallurgical,biometallurgical,and hydrometallurgical.Given the current scenario,it is necessary to develop environmentally friendly methods to recycle batteries and synthesize materials with multiple technological applications.This study presents a review of industrial and laboratory processes for recycling spent LIBs and producing materials that can be used in new batteries,energy storage devices,electrochemical sensors,and photocatalytic reactions.展开更多
The synergistic pyrolysis has been increasingly used for recycling spent lithium-ion batteries(LIBs)and organic wastes(hydrogen and carbon sources),which are in-situ transformed into various reducing agents such as H_...The synergistic pyrolysis has been increasingly used for recycling spent lithium-ion batteries(LIBs)and organic wastes(hydrogen and carbon sources),which are in-situ transformed into various reducing agents such as H_(2),CO,and char via carbothermal and/or gas thermal reduction.Compared with the conventional roasting methods,this“killing two birds with one stone”strategy can not only reduce the cost and energy consumption,but also realize the valorization of organic wastes.This paper concluded the research progress in synergistic pyrolysis recycling of spent LIBs and organic wastes.On the one hand,valued metals such as Li,Co,Ni,and Mn can be recovered through the pyrolysis of the cathode materials with inherent organic materials(e.g.,separator,electrolyte)or graphite anode.During the pyrolysis process,the organic materials are decomposed into char and gases(e.g.,CO,H_(2),and CH_(4))as reducing agents,while the cathode material is decomposed and then converted into Li_(2)CO_(3) and low-valent transition metals or their oxides via in-situ thermal reduction.The formed Li_(2)CO_(3) can be easily recovered by the water leaching process,while the formed transition metals or their oxides(e.g.,Co,CoO,Ni,MnO,etc.)can be recovered by the reductant-free acid leaching or magnetic separation process.On the other hand,organic wastes(e.g.,biomass,plastics,etc.)as abundant hydrogen and carbon sources can be converted into gas(e.g.,H_(2),CO,etc.)and char via pyrolysis.The cathode materials are decomposed and subsequently reduced by the pyrolysis gas and char.In addition,the pyrolysis oil and gas can be upgraded by catalytic reforming with the active metals derived from cathode material.Finally,great challenges are proposed to promote this promising technology in the industrial applications.展开更多
Copper-indium-gallium-diselenide(CIGS)is a fast-evolving commercial solar cell.The firm demand for global carbon reduction and the rise of potential environmental threats necessitate spent CIGS solar cell recycling.In...Copper-indium-gallium-diselenide(CIGS)is a fast-evolving commercial solar cell.The firm demand for global carbon reduction and the rise of potential environmental threats necessitate spent CIGS solar cell recycling.In this paper,the sources and characteristics of valuable metals in spent CIGS solar cells were reviewed.The potential environmental impacts of CIGS,including service life,critical material,and material toxicity,were outlined.The main recovery methods of valuable metals in the various types of spent CIGS,including hydrometallurgy,pyrometallurgy,and comprehensive treatment processes,were compared and discussed.The mechanism of different recovery processes was summarized.The challenges faced by different recycling processes of spent CIGS were also covered in this review.Finally,the economic viability of the recycling process was assessed.The purpose of this review is to provide reasonable suggestions for the sustainable development of CIGS and the harmless disposal of spent CIGS.展开更多
Electric arc furnace dust(EAFD)is a hazardous waste but can also be a potential secondary resource for valuable metals,such as Zn and Fe.Given the increased awareness of carbon emission reduction,energy conservation,a...Electric arc furnace dust(EAFD)is a hazardous waste but can also be a potential secondary resource for valuable metals,such as Zn and Fe.Given the increased awareness of carbon emission reduction,energy conservation,and environmental protection,hydrometallurgical technologies for the detoxification and resource use of EAFD have been developing rapidly.This work summarizes the generation mechanisms,compositions,and characteristics of EAFD and presents a critical review of various hydrometallurgical treatment methods for EAFD,e.g.,acid leaching,alkaline leaching,salt leaching,and pretreatment–enhanced leaching methods.Simultaneously,the phase transformation mechanisms of zinc-containing components in acid and alkali solutions and pretreatment processes are expounded.Finally,two novel combined methods,i.e.,oxygen pressure sulfuric acid leaching combined with composite catalyst preparation,and synergistic roasting of EAFD and municipal solid waste incineration fly ash combined with alkaline leaching,are proposed,which can provide future development directions to completely recycling EAFD by recovering valuable metals and using zinc residue.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2020501001,E2021501029,A2021501007,E2022501028,E2022501029)+5 种基金the Natural Science Foundation-Steel,the Iron Foundation of Hebei Province(No.E2022501030)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(22567627H)the Science and Technology Project of Hebei Education Department(ZD2022158)the Central Guided Local Science and Technology Development Fund Project of Hebei province(226Z4401G)the China Scholarship Council(No.202206080061,202206050119)the 2023 Hebei Provincial Postgraduate Student Innovation Ability training funding project(CXZZSS2023195)。
文摘The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.
基金the financial support of the National Natural Science Foundation of China(Nos.52173046,52473050,and 22275166)the Natural Science Foundation of Zhejiang Province(No.LZ21E030002)。
文摘The overuse and ineffective management of plastics have led to significant environmental pollution. Catalytic upcycling into value-added chemicals has emerged as a promising solution. This review provides a comprehensive overview of recent advances in catalytic upcycling, focusing on the cleavage of chemical bonds such as carbon-carbon (C-C), carbon-oxygen (C-O), and carbon-hydrogen (C-H) in plastics. It systematically discusses plastics conversion via electrocatalysis, thermal catalysis, and photocatalysis. Additionally, it explores the conversion of plastics into value-added chemicals and functional polymers. The review also addresses the challenges in this field and aims to offer insights for developing sustainable and effective plastics upcycling technologies.
基金National Research Foundation Singapore and National Environment Agency Singapore,Grant/Award Number:CTRL-2023-1D-01。
文摘Direct recycling is a novel approach to overcoming the drawbacks of conventional lithium-ion battery(LIB)recycling processes and has gained considerable attention from the academic and industrial sectors in recent years.The primary objective of directly recycling LIBs is to efficiently recover and restore the active electrode materials and other components in the solid phase while retaining electrochemical performance.This technology's advantages over traditional pyrometallurgy and hydrometallurgy are costeffectiveness,energy efficiency,and sustainability,and it preserves the material structure and morphology and can shorten the overall recycling path.This review extensively discusses the advancements in the direct recycling of LIBs,including battery sorting,pretreatment processes,separation of cathode and anode materials,and regeneration and quality enhancement of electrode materials.It encompasses various approaches to successfully regenerate high-value electrode materials and streamlining the recovery process without compromising their electrochemical properties.Furthermore,we highlight key challenges in direct recycling when scaled from lab to industries in four perspectives:(1)battery design,(2)disassembling,(3)electrode delamination,and(4)commercialization and sustainability.Based on these challenges and changing market trends,a few strategies are discussed to aid direct recycling efforts,such as binders,electrolyte selection,and alternative battery designs;and recent transitions and technological advancements in the battery industry are presented.
文摘In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower is the largest structure in the world with an onsite water recycling system.Built by the Australian com-pany Aquacell(Milton,NSW,Australia),the system cleans 113 m^(3)of sewage,sink,shower,and other wastewater each day for use in irrigation and flushing toilets,saving an estimated 35000 m?of water anmually[1].The building is just one of dozens in San Fran-cisco outitted with their own water recycling systems,thanks to a city mandate enacted in 2015[1].
文摘Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 7,July 2024,Page 1554 https://doi.org/10.1007/s12613-024-2907-7 In this article,affiliation 1 has been erroneously given as Department of Materials Science and Engineering,Seoul 03722,Korea.
基金supported by the National Natural Science Foundation of China(No.21774139)China,Key Research and Development Program of Shanxi Province,China(No,202102040201009)special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology and the Fund for Shanxi“1331 Project”.Thanks to Ningbo Kejiang Culture Sci.&Tech.Development Co.,Ltd.for the help in schematic drawing。
文摘Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.
基金the Technology Innovation Program(or Industrial Strategic Technology Development Program)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20022950)。
文摘The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field.
基金supported by the National Natural Science Foundation of China(52270132).
文摘Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.
基金supported by the National Natural Science Foundation of China(22078281)。
文摘The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC).
基金supported by the National Key R&D Program of China,China(2022YFC3902600)CAS Project for Young Scientists in Basic Research,China(YSBR-044)+1 种基金Guangdong Basic and Applied Basic Research Foundation,China(2021B1515020068)China Postdoctoral Science Foundation,China(2023M733510).
文摘Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs,starting with lithium-ion power batteries.Recent research on raw material collection,metallurgical recovery,separation and purification is highlighted,particularly in terms of all aspects of economic efficiency,energy consumption,technology transformation and policy management.Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored,revealing a clean and efficient closed-loop recovery mechanism.Optimization methods are proposed for future recycling technologies,with a focus on how future research directions can be industrialized.Ultimately,based on life-cycle assessment,the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies.This work is designed to support the sustainable development of the new energy power industry,to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling.
基金This study was supported by the National Natural Science Foundation of China(42261008,41971034)the Natural Science Foundation of Gansu Province,China(22JR5RA074).
文摘Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.
基金Project(52174384)supported by the National Natural Science Foundation of ChinaProject(LZB2021003)supported by Fundamental Research Funds for the Central Universities,China。
文摘Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.
基金supported by the fund of the National Natural Science Foundation of China(51875127,52275322).
文摘The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.
基金supportad by Fundação de AmparoàPesquisa e Inovação do Estado de Santa Caturina(FAPESC)(Grant Number 2021TR000327)by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil(CAPES)-Finance Code 001.
文摘The textile industry generates large volumes of waste throughout its production process.Most of this waste is colored,therefore,discoloration is an important step toward recycling and reusing this waste.This study focused on the chemical reductive discoloration of textile waste composed of cotton dyed with reactive dye.The experimental design demonstrated the significant influence of the concentration of reducing agent and time of reaction on the degree of whiteness of the cotton fibers.The concentration of the alkaline agent was not significant in the process.The optimization of the reaction conditions lead to Berger degree of 50.5±3.5.The discolored cotton was chemically recycled through dissolution in ionic liquid 1-ethyl-3-methylimidazolium chloride and regeneration in film form in water.The microstructure of the regenerated cellulose films was evaluated by Scanning Electron Microscopy(SEM)indicating complete dissolution and uniform regeneration.The discoloration process reduced the polymerization degree and crystallinity index of the cotton fibers but retained the cellulose I structure.The dissolution and cellulose regeneration process results in transparent films with an amorphous structure.The thermal behavior,evaluated by thermogravimetric analysis,indicated that residues and regenerated film presented a main decomposition step.The maximum decomposition rate temperature of the regenerated films was approximately 40℃lower than the cotton fibers,which correlates well with the reduction in polymerization degree and amorphous structure.In general,the study demonstrated that textile cotton waste dyed with reactive dyes can be chemically discolored to form transparent and amorphous films,contributing to the development of sustainable strategies for the textile industry.
文摘The aim of this study was to determine the quality of rebar produced from recycled scrap metal collected throughout the country,and imported rebar sold in the Republic of Guinea.To do this,the samples were subjected to various mechanical tests involving traction,bending and microscopic analysis.In the Lambanyi and Casse Sonfonia samples,all the tensile strength values for diameters 12,14 and 16 were above 550 MPa.Conversely,the iron samples from Baillobaye and the 10 mm diameters of the samples from Casse Sonfonio and Lambanyi have less appreciable values.The limits of elasticity were determined.The various values found vary more or less from the conventional yield strength of the NF A35-016 reference supplied by CBITEC,which is 500 MPa.Microscopic analysis gives us an insight into the internal structure of the iron samples used.This study may provide the company and the vendors with an alternative for their improvements.
文摘This paper introduces an intelligent waste recycling automatic classification system,which integrates sensors,image recognition,and robotic arms to achieve automatic identification and classification of waste.The system monitors the composition and properties of waste in real time through sensors,and uses image recognition technology for precise classification,and the robotic arm is responsible for grabbing and disposing.The design and implementation of the system have important practical significance and application value,and help promote the popularization and standardization of waste classification.This paper details the system s architecture,module division,sensors and recognition technology,robotic arm and grabbing technology,data processing and control system,and testing and optimization process.Experimental results show that the system has efficient waste recycling efficiency and accuracy in practical applications,bringing new development opportunities to the waste recycling industry.
基金the Brazilian Federal Agency for Support and Evaluation of Graduate Education(CAPES)the Brazilian National Council for Scientific and Technological Development(CNPq,306239/2019-1)for their financial support。
文摘Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacitance,durability,and safety.However,such widespread use implies the generation of large amounts of electronic waste.It is estimated that more than 11 million ton of LIBs waste will have been generated by 2030.Battery recycling can contribute to minimizing environmental contamination and reducing production costs through the recovery of high-value raw materials such as lithium,cobalt,and nickel.The most common processes used to recycle spent LIBs are pyrometallurgical,biometallurgical,and hydrometallurgical.Given the current scenario,it is necessary to develop environmentally friendly methods to recycle batteries and synthesize materials with multiple technological applications.This study presents a review of industrial and laboratory processes for recycling spent LIBs and producing materials that can be used in new batteries,energy storage devices,electrochemical sensors,and photocatalytic reactions.
基金supported by the National Key Research and Development Program of China(Grant 2022YFC3701504)。
文摘The synergistic pyrolysis has been increasingly used for recycling spent lithium-ion batteries(LIBs)and organic wastes(hydrogen and carbon sources),which are in-situ transformed into various reducing agents such as H_(2),CO,and char via carbothermal and/or gas thermal reduction.Compared with the conventional roasting methods,this“killing two birds with one stone”strategy can not only reduce the cost and energy consumption,but also realize the valorization of organic wastes.This paper concluded the research progress in synergistic pyrolysis recycling of spent LIBs and organic wastes.On the one hand,valued metals such as Li,Co,Ni,and Mn can be recovered through the pyrolysis of the cathode materials with inherent organic materials(e.g.,separator,electrolyte)or graphite anode.During the pyrolysis process,the organic materials are decomposed into char and gases(e.g.,CO,H_(2),and CH_(4))as reducing agents,while the cathode material is decomposed and then converted into Li_(2)CO_(3) and low-valent transition metals or their oxides via in-situ thermal reduction.The formed Li_(2)CO_(3) can be easily recovered by the water leaching process,while the formed transition metals or their oxides(e.g.,Co,CoO,Ni,MnO,etc.)can be recovered by the reductant-free acid leaching or magnetic separation process.On the other hand,organic wastes(e.g.,biomass,plastics,etc.)as abundant hydrogen and carbon sources can be converted into gas(e.g.,H_(2),CO,etc.)and char via pyrolysis.The cathode materials are decomposed and subsequently reduced by the pyrolysis gas and char.In addition,the pyrolysis oil and gas can be upgraded by catalytic reforming with the active metals derived from cathode material.Finally,great challenges are proposed to promote this promising technology in the industrial applications.
基金financially supported by the Beijing Natural Science Foundation of China (No. 2232038)the National Natural Science Foundation of China (Nos. 52034002 and U1802253)the Fundamental Research Funds for the Central Universities (No. FRF-TT-19-001)
文摘Copper-indium-gallium-diselenide(CIGS)is a fast-evolving commercial solar cell.The firm demand for global carbon reduction and the rise of potential environmental threats necessitate spent CIGS solar cell recycling.In this paper,the sources and characteristics of valuable metals in spent CIGS solar cells were reviewed.The potential environmental impacts of CIGS,including service life,critical material,and material toxicity,were outlined.The main recovery methods of valuable metals in the various types of spent CIGS,including hydrometallurgy,pyrometallurgy,and comprehensive treatment processes,were compared and discussed.The mechanism of different recovery processes was summarized.The challenges faced by different recycling processes of spent CIGS were also covered in this review.Finally,the economic viability of the recycling process was assessed.The purpose of this review is to provide reasonable suggestions for the sustainable development of CIGS and the harmless disposal of spent CIGS.
基金financially supported by the National Natural Science Foundation of China(No.52074035)the Fundamental Research Funds for the Central Universities(No.00007720)the National Key Research and Development Program of China(No.2020YFC1910000)。
文摘Electric arc furnace dust(EAFD)is a hazardous waste but can also be a potential secondary resource for valuable metals,such as Zn and Fe.Given the increased awareness of carbon emission reduction,energy conservation,and environmental protection,hydrometallurgical technologies for the detoxification and resource use of EAFD have been developing rapidly.This work summarizes the generation mechanisms,compositions,and characteristics of EAFD and presents a critical review of various hydrometallurgical treatment methods for EAFD,e.g.,acid leaching,alkaline leaching,salt leaching,and pretreatment–enhanced leaching methods.Simultaneously,the phase transformation mechanisms of zinc-containing components in acid and alkali solutions and pretreatment processes are expounded.Finally,two novel combined methods,i.e.,oxygen pressure sulfuric acid leaching combined with composite catalyst preparation,and synergistic roasting of EAFD and municipal solid waste incineration fly ash combined with alkaline leaching,are proposed,which can provide future development directions to completely recycling EAFD by recovering valuable metals and using zinc residue.