A protocol is presented for genetically engineering loblolly pine (Pinus taeda L.) using particle bombardment. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to...A protocol is presented for genetically engineering loblolly pine (Pinus taeda L.) using particle bombardment. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Plasmid pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) cryIAc coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (Nos) terminator sequences, and the selectable marker gene, neomycin phosphotransferase II (nptII) controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected by kanamycin resistance conferred by the introduced NPTII gene. Shoot regeneration was induced from the kanamycin-resistant callus, and transgenic plantlets were then produced. The presence of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern blot analysis, and insect feeding assays. The recovered transgenic plants were acclimatized and then established in soil.展开更多
文摘A protocol is presented for genetically engineering loblolly pine (Pinus taeda L.) using particle bombardment. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Plasmid pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) cryIAc coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (Nos) terminator sequences, and the selectable marker gene, neomycin phosphotransferase II (nptII) controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected by kanamycin resistance conferred by the introduced NPTII gene. Shoot regeneration was induced from the kanamycin-resistant callus, and transgenic plantlets were then produced. The presence of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern blot analysis, and insect feeding assays. The recovered transgenic plants were acclimatized and then established in soil.