We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account t...We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left) translation for increasing elastic modulus (length/radius ratio) of MBs. Moreover, the frequency right (left) translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one,展开更多
Single crystal of Yb x Y 1- x Al 3(BO 3) 4 (Yb∶YAB) was grown by using flux method based on the potassium trimolybdate. 160 mW efficient continuous wave green output was obtained from a fibre coupled ...Single crystal of Yb x Y 1- x Al 3(BO 3) 4 (Yb∶YAB) was grown by using flux method based on the potassium trimolybdate. 160 mW efficient continuous wave green output was obtained from a fibre coupled 976 nm laser diode. The conversion efficiency is larger than 11 3%, and the electrical input green conversion efficiency is 3 9%. Tunable green output from 513 0 to 545 8 nm is also demonstrated with a quartz birefringent filter. By enhancing the incident pump power, 1 1 W cw green output can be reached.展开更多
Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is pro...Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is proposed.Fine compensation is made in the vicinity of the crystal temperature inflection point by using the non-real-time temperature compensation strategy,and self-calibration system is integrated in the crystal.The method improves the digital compensated phase noise,simplifies the traditional OCXO development system,reduces the cost and shortens the developing cycle.Experiment results show that with a standard reference signal and self-calibration updated data,the oscillator can work stable and achieve its best performence.The performance index of crystal oscillator had an improvement with one to two orders of magnitude on the basis of original technical index.The method is widely used in the improvement of high-end crystal oscillator and atomic clock.展开更多
Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive ind...Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive index properties have been addressed in previous works.In this paper,through studying the transmission and reflection characteristics of two types of twodimensional plasma photonic crystals,it is found that plasma photonic crystals play an important role in absorbing waves,and they show broader band and higher amplitude absorption characteristics than bulk plasmas.Also,the absorption of plasma photonic crystals can be tuned via plasma parameters;varying the collision frequency can make the bandwidth and amplitude tunable,but cannot change the central frequency,whereas varying the plasma frequency would control both the location and the amplitude of the absorbers.These features of plasma photonic crystals have potential for terahertz tunable absorber applications.展开更多
Red,blue and green visible lasers are more attractive with the development of the science and technology.Self frequency doubling is an important approach to realize visible lasers.For self frequency doubling,the basic...Red,blue and green visible lasers are more attractive with the development of the science and technology.Self frequency doubling is an important approach to realize visible lasers.For self frequency doubling,the basic requests are high figure of merit(FOM),high damage threshold,good chemical stability and mechanical properties.Perfection and growth characters are also important for a practical SFD crystal. In recent years,the discovery of rare earth calcium oxyborates has resulted in the renewal in the field of SFD crystal.ReCaO(BO 3) 3(ReCOB)is a new type of novel nonlinear optical crystals which is nearly congruently melt and can be grown with Czochralski method.ReCOB crystals possess high nonlinear coefficients and damage thresholds.They are non hydroscopic and easy cutting and polishing.They belong to monoclinic with point group m and space group cm.The strong anisotropy originated from the low symmetry makes the measurement and application of the crystal more complicated.More than half of naturally existed crystals belongs to low symmetry,consequently,the research on the nonlinear and anisotropic laser optical properties are not only important for ReCOB crystal,but also useful for the applications of other low symmetry crystals.展开更多
Electrically driven structural patterns in liquid crystals(LCs)have attracted considerable attention due to their electrooptical applications.Here,we disclose various appealing reconfigurable LC microstructures in a d...Electrically driven structural patterns in liquid crystals(LCs)have attracted considerable attention due to their electrooptical applications.Here,we disclose various appealing reconfigurable LC microstructures in a dual frequency nematic LC(DFNLC)owing to the electroconvection-induced distortion of the LC director,including one-dimensional rolls,chevron pattern,two-dimensional grids,and unstable chaos.These patterns can be switched among each other,and the lattice constants are modulated by tuning the amplitude and frequency of the applied electric field.The electrically switchable self-assembled microstructures and their beam steering capabilities thus provide a feasible way to tune the functions of DFNLC-based optical devices.展开更多
The finite-difference time-domain (FDTD) method is proposed for analyzing the surface acoustic wave (SAW) propagation in two-dimensional (2D) piezoelectric phononic crystals (PCs) at radio frequency (RF), an...The finite-difference time-domain (FDTD) method is proposed for analyzing the surface acoustic wave (SAW) propagation in two-dimensional (2D) piezoelectric phononic crystals (PCs) at radio frequency (RF), and also experiments are established to demonstrate its analysis result of the PCs' band gaps. The FDTD method takes the piezoelectric effect of PCs into account, in which periodic boundary conditions are used to decrease memory/time consumption and the perfectly matched layer boundary conditions are adopted as the SAW absorbers to attenuate artificial reflections. Two SAW delay lines are established with/without piezoelectric PCs located between interdigital transducers. By removing several echoes with window gating function in time domain, delay lines transmission function is achieved. The PCs' transmission functions and band gaps are obtained by comparing them in these two delay lines. When Aluminum/128°YX-LiNbO3 is adopted as scatter and substrate material, the PCs' band gap is calculated by this FDTD method and COMSOL respectively. Results show that computational results of FDTD agree well with experimental results and are better than that of COMSOL.展开更多
基金supported by the National Natural Science Foundation of China(11272127 and 51435006)the Research Fund for the Doctoral Program of Higher Education of China(20130142110022)
文摘We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left) translation for increasing elastic modulus (length/radius ratio) of MBs. Moreover, the frequency right (left) translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one,
文摘Single crystal of Yb x Y 1- x Al 3(BO 3) 4 (Yb∶YAB) was grown by using flux method based on the potassium trimolybdate. 160 mW efficient continuous wave green output was obtained from a fibre coupled 976 nm laser diode. The conversion efficiency is larger than 11 3%, and the electrical input green conversion efficiency is 3 9%. Tunable green output from 513 0 to 545 8 nm is also demonstrated with a quartz birefringent filter. By enhancing the incident pump power, 1 1 W cw green output can be reached.
基金Supported by the National Natural Science Foundation of China (10978017)the Open Fund of Key Laboratory of Time and Frequency Primary Standards (CAS)+2 种基金the Postdoctoral Grant of China (94469)the Basic and Advanced Technology Research Foundation of Hennan Province (122300410169)the Fundamental Research Funds for the Central Universities
文摘Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is proposed.Fine compensation is made in the vicinity of the crystal temperature inflection point by using the non-real-time temperature compensation strategy,and self-calibration system is integrated in the crystal.The method improves the digital compensated phase noise,simplifies the traditional OCXO development system,reduces the cost and shortens the developing cycle.Experiment results show that with a standard reference signal and self-calibration updated data,the oscillator can work stable and achieve its best performence.The performance index of crystal oscillator had an improvement with one to two orders of magnitude on the basis of original technical index.The method is widely used in the improvement of high-end crystal oscillator and atomic clock.
基金supported by National Natural Science Foundation of China(Nos.61107030,11174280,60990323 and 60990320)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2010CL025)the China Postdoctoral Science Foundation
文摘Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive index properties have been addressed in previous works.In this paper,through studying the transmission and reflection characteristics of two types of twodimensional plasma photonic crystals,it is found that plasma photonic crystals play an important role in absorbing waves,and they show broader band and higher amplitude absorption characteristics than bulk plasmas.Also,the absorption of plasma photonic crystals can be tuned via plasma parameters;varying the collision frequency can make the bandwidth and amplitude tunable,but cannot change the central frequency,whereas varying the plasma frequency would control both the location and the amplitude of the absorbers.These features of plasma photonic crystals have potential for terahertz tunable absorber applications.
文摘Red,blue and green visible lasers are more attractive with the development of the science and technology.Self frequency doubling is an important approach to realize visible lasers.For self frequency doubling,the basic requests are high figure of merit(FOM),high damage threshold,good chemical stability and mechanical properties.Perfection and growth characters are also important for a practical SFD crystal. In recent years,the discovery of rare earth calcium oxyborates has resulted in the renewal in the field of SFD crystal.ReCaO(BO 3) 3(ReCOB)is a new type of novel nonlinear optical crystals which is nearly congruently melt and can be grown with Czochralski method.ReCOB crystals possess high nonlinear coefficients and damage thresholds.They are non hydroscopic and easy cutting and polishing.They belong to monoclinic with point group m and space group cm.The strong anisotropy originated from the low symmetry makes the measurement and application of the crystal more complicated.More than half of naturally existed crystals belongs to low symmetry,consequently,the research on the nonlinear and anisotropic laser optical properties are not only important for ReCOB crystal,but also useful for the applications of other low symmetry crystals.
基金supported by the National Key Research and Development Program of China(No.2021YFA1202000)National Natural Science Foundation of China(Nos.52003115 and RK106LH21001)Natural Science Foundation of Jiangsu Province(Nos.BK20212004 and BK20200320).
文摘Electrically driven structural patterns in liquid crystals(LCs)have attracted considerable attention due to their electrooptical applications.Here,we disclose various appealing reconfigurable LC microstructures in a dual frequency nematic LC(DFNLC)owing to the electroconvection-induced distortion of the LC director,including one-dimensional rolls,chevron pattern,two-dimensional grids,and unstable chaos.These patterns can be switched among each other,and the lattice constants are modulated by tuning the amplitude and frequency of the applied electric field.The electrically switchable self-assembled microstructures and their beam steering capabilities thus provide a feasible way to tune the functions of DFNLC-based optical devices.
基金supported by the National Natural Science Foundation of China(11174318,11304346,61106081)Chinese Postdoctoral Science Foundation(2011M501204,2013T60718)+2 种基金National High Technology Research and Development Program(863 Program)(SS2013AA041103)Beijing Municipal Science and Technology Commission Project(Z141100003814016)the Fundamental Research Funds for the Central Universities(HUST:2013QN038)
文摘The finite-difference time-domain (FDTD) method is proposed for analyzing the surface acoustic wave (SAW) propagation in two-dimensional (2D) piezoelectric phononic crystals (PCs) at radio frequency (RF), and also experiments are established to demonstrate its analysis result of the PCs' band gaps. The FDTD method takes the piezoelectric effect of PCs into account, in which periodic boundary conditions are used to decrease memory/time consumption and the perfectly matched layer boundary conditions are adopted as the SAW absorbers to attenuate artificial reflections. Two SAW delay lines are established with/without piezoelectric PCs located between interdigital transducers. By removing several echoes with window gating function in time domain, delay lines transmission function is achieved. The PCs' transmission functions and band gaps are obtained by comparing them in these two delay lines. When Aluminum/128°YX-LiNbO3 is adopted as scatter and substrate material, the PCs' band gap is calculated by this FDTD method and COMSOL respectively. Results show that computational results of FDTD agree well with experimental results and are better than that of COMSOL.