NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O...NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O)/n(SiO_(2)))on the relative crystallinity,textural properties and crystallization kinetics were investigated.The results show that alkalinity exerts a nonmonotonic influence on the relative crystallinity and textural properties,which exhibit a maximum at the alkalinity of 0.43.The nucleation kinetics are studied by fitting the experimental data of relative crystallinity with the Gualtieri model.It is shown that the nucleation rate constant increases with increasing alkalinity,while the duration period of nucleation decreases with increasing alkalinity.For n(Na_(2)O)/n(SiO_(2))ratios ranging from 0.38 to 0.55,the as-synthesized NaY zeolites exhibit narrower crystal size distributions with the increase in alkalinity.The growth rates determined from the variations of average crystal size with time are 51.09,157.50,46.17 and 24.75 nm·h^(-1),respectively.It is found that the larger average crystal sizes at the alkalinity of 0.38 and 0.43 are attributed to the dominant role of crystal growth over nucleation.Furthermore,the combined action of prominent crystal growth and the longer duration periods of nucleation at the alkalinity of 0.38 and 0.43 results in broader crystal size distributions.The findings demonstrate that control of the properties of NaY zeolite and the crystallization kinetics can be achieved by conducting the crystallization process in an appropriate range of alkalinity of the reaction mixture.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination s...The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.展开更多
In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ...In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ratio and heat treatment on crystallization and mechanical properties were studied.The crystallization kinetics and X-Ray Diffraction(XRD)results showed that SiO_(2)/Al_(2)O_(3) ratio and heat treatment system had a direct impact on the crystallization behavior of potassium aluminosilicate glass-ceramics.When heat-treated at 680℃/2 h and 780℃/1 h,cracks generated on the surface of the sample with the addition of SiO_(2)/Al_(2)O_(3)=4.8(in mol)due to the huge difference in the coefficient of thermal expansion between glass matrix and surface.When the addition of SiO_(2)/Al_(2)O_(3)(in mol)was 4,the sample with leucite as the main crystalline phase showed an excellent fracture toughness(1.46 MPa·m^(0.5))after the heat treatment of 680℃/2 h and 780℃/5 h.And there was a phase transformation from kaliophilite to leucite.The crystalline phases of the sample heat-treated at 680℃/8 h and 780℃/1 h were leucite and kaliophilite,which resulted in the visible light transmittance of 63%and the fracture toughness of 0.91 MPa·m^(0.5).Furthermore,after the heat treatment of 680℃/2 h and 780℃/5 h,the main crystalline phase of the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol)was still kaliophilite.Because leucite only grows on the surface of the sample and is hard to grow inward,it is hard to achieve the bulk crystallization of leucite in the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol).展开更多
The microstructure of as-cast Zr60Al15Ni25 bulk metallic glass was investigated by high-resolution transmission electron microscopy. It is found that there exist numerous short-range order regions (SRORs) in the met...The microstructure of as-cast Zr60Al15Ni25 bulk metallic glass was investigated by high-resolution transmission electron microscopy. It is found that there exist numerous short-range order regions (SRORs) in the metallic glass though it is identified to be amorphous by X-ray diffraction method. Furthermore, the amorphous degree shows a close correlation with the microstructure of corresponding mother ingot. The crystallization kinetics was investigated by differential scanning calorimetry under isochronal and isothermal conditions. The results show that the crystallization is triggered by the growth of the pre-existing SRORs and the growth is three-dimension diffusion-controlled. The amorphous degree of Zr60Al15Ni25 bulk metallic glass considerably influences its crystallization kinetics, namely, the more homogeneous distribution of atoms results in a more sluggish nucleation behavior.展开更多
0.5% (molar fraction) Sb was added to Mg61Cu28Gd11 glass forming alloy to improve its thermal stability and corrosion resistance. The crystallization kinetics of Mg61Cu28Gd11 and (Mg0.61Cu0.28Gd0.11)99.5Sb0.5 amor...0.5% (molar fraction) Sb was added to Mg61Cu28Gd11 glass forming alloy to improve its thermal stability and corrosion resistance. The crystallization kinetics of Mg61Cu28Gd11 and (Mg0.61Cu0.28Gd0.11)99.5Sb0.5 amorphous alloys was investigated under continuous heating. The temperatures of glass transition, onset and peak crystallization for the two glasses exhibit strong heating-rate dependence. The activation energies for the onset and peak crystallization were determined based on the Oawza plots. Vogel-Fulcher-Tamman equation analysis shows that the larger strength parameter and much longer relaxation time are obtained due to the Sb addition. The corrosion properties of the two glassy alloys were studied by means of potentiodynamic and immersion tests. Compared with the parent alloy, (Mg0.61Cu0.28Gd0.11)99.5Sb0.5 glassy alloy exhibits a superior corrosion resistance in Cl--containing alkaline solution, as indicated by the lower passive current density and corrosion rate. Based on the point defect model, the effect mechanism of Sb addition on corrosion resistance of Mg-Cu-Gd glassy alloy is carefully identified.展开更多
Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon ...Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.展开更多
Nylon 10 T and Nylon 10T/1010 samples were synthesized by direct melt polymerization. The non-isothermal crystallization kinetics of Nylon 10 T and Nylon 10T/1010 was investigated by means of differential scanning cal...Nylon 10 T and Nylon 10T/1010 samples were synthesized by direct melt polymerization. The non-isothermal crystallization kinetics of Nylon 10 T and Nylon 10T/1010 was investigated by means of differential scanning calorimetry(DSC). Jeziorny equation and Mo equation were applied to describe the non-isothermal crystallization kinetics of the Nylon 10 T and the Nylon 10T/1010. The activation energies for non-isothermal crystallization were obtained by Vyazovkin's method and Friedman's method, respectively. These results showed that Jeziorny equation and Mo equation well described the non-isothermal crystallization kinetics of the Nylon 10 T and the Nylon 10T/1010. It was found that the values of the activation energy for non-isothermal crystallization of the Nylon 10T/1010 were lower than those of the Nylon 10 T at a given temperature or relative crystallinity degree,which revealed that crystallization ability of the Nylon 10T/1010 was higher. The crystal morphology was observed by means of a polarized optical microscope(POM) and X-ray diffraction(XRD). It was found that the addition of sebacic acid comonomer not only did not change the crystal form of the Nylon 10 T, but also significantly increased the number and decreased the size of spherulites. Comparing with the Nylon 10 T, the crystallization rate was increased with the addition of the sebacic acid comonomer.展开更多
Wollastonite glass ceramics were prepared using the reactive crystallization sintering method by mixing waste glass powders with gehlenite.The crystallization property,thermodynamics,and kinetics of the prepared wolla...Wollastonite glass ceramics were prepared using the reactive crystallization sintering method by mixing waste glass powders with gehlenite.The crystallization property,thermodynamics,and kinetics of the prepared wollastonite glass ceramics were determined by X-ray diffraction analysis,scanning electron microscopy,energy-dispersive spectroscopy,high-resolution transmission electron microscopy,and differential thermal analysis.Results showed that crystals of wollastonite and alumina could be found in the gehlenite through its reaction with silicon dioxide.The wollastonite crystals showed a lath shape with a certain length-to-diameter ratio.The crystals exhibited excellent bridging and reinforcing effects.In the crystallization process,the aluminum ions in gehlenite diffused into the glass and the silicon ions in the glass diffused into gehlenite.Consequently,the three-dimensional frame structure of gehlenite was partially damaged to form a chain-like wollastonite.The results of crystallization thermodynamics and kinetics indicated that crystallization reaction could occur spontaneously under a low temperature(1173 K),with 20 wt%gehlenite added as the reactive crystallization promoter.The crystallization activation energy was evaluated as 261.99 kJ/mol by using the Kissinger method.The compression strength of the wollastonite glass ceramic samples(7.5 cm×7.5 cm)reached 251 MPa.展开更多
The classical crystallization theories proposed by Avrami, Evans, and Mandelkern wereextended to the nonisothermal situation. The expressions derived from the classical equations canbe expressed in either the differen...The classical crystallization theories proposed by Avrami, Evans, and Mandelkern wereextended to the nonisothermal situation. The expressions derived from the classical equations canbe expressed in either the differential form or the integral form. A method was provided so as toobtain the parameters characterizing the crystallization rate and mechanism from DSC curves withseveral constant heating or cooling rates. The rate constants of crystallization obtained from bothisothermal and nonisothermal curves of poly(ethylene terephthalate)were compared.展开更多
The non-isothermal crystallization kinetics of polyamide 6/diamine-modified multi-walled carbon nanotube (PA6/D-MWNT) nanocomposite was investigated by differential scanning calorimetry (DSC). The modified Avrami ...The non-isothermal crystallization kinetics of polyamide 6/diamine-modified multi-walled carbon nanotube (PA6/D-MWNT) nanocomposite was investigated by differential scanning calorimetry (DSC). The modified Avrami equation, the Ozawa equation and the combined Avrami/Ozawa equation were employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. It was found that the combined Avrami/Ozawa equation could successfully describe the non-isothermal crystallization process. The results showed that D-MWNTs not only acted as effective heterogeneous nucleating agents for PA6 and noticeably increased the crystallization temperature of PA6, but also influenced the mechanism of nucleation and crystal growth of PA6 and then reduced the overall crystallization rate of the neat PA6 matrix. The crystallization activation energy for the nanocomposite sample was greater than that of the neat PA6, which indicated that the addition of D-MWNTs hindered the mobility of PA6 chain segments.展开更多
Crystallization kinetics of metastable B-quartz solid solution as a desirable phase for the production of trans- parent lithium aluminosilicate (LAS) glass ceramics was investigated in the presence of Y203. Accordin...Crystallization kinetics of metastable B-quartz solid solution as a desirable phase for the production of trans- parent lithium aluminosilicate (LAS) glass ceramics was investigated in the presence of Y203. Accordingly, differential thermal analysis scans were performed thoroughly to study the mechanism of crystallization kinetics. The aim of this investigation is to discover the complicated mechanism of crystallization process in the presence of co-additives and ac- cordingly find a way for increasing the transparency of glass ceramics. It is shown that the bulk (3D) growth is intensively increased by the enhancement of Y203. Then again, reducing nucleation and increasing growth mechanisms were recog- nized for the LAS system in the presence of Y2O3. Results of the investigation illustrate that when co-additives are added to glasses, it is necessary to nucleate the optical component separately before the growth process.展开更多
Abstract: The crystallization kinetics of Li20-A12O3-GeO2-P205 (LAGP) glass fabricated via the conventional melt-quenching method was studied by differential scanning calorimetry (DSC) under non- isothermal condi...Abstract: The crystallization kinetics of Li20-A12O3-GeO2-P205 (LAGP) glass fabricated via the conventional melt-quenching method was studied by differential scanning calorimetry (DSC) under non- isothermal condition at different heating rates. The activation energy of glass transition Eg is 634.4 kJ/mol, indicating that LAGP glass is easy to crystallize at an elevated temperature. The activation energy of crystallization Eo and Avrami index n obtained from Matusita's model are 442.01 kJ/mol and 1.7, respectively. The value of n reveals that bulk crystallization predominates slightly over surface crystallization during crystallization process. LAGP glass-ceramics after different heat treatments have the same crystalline phases determined as major phase LiGe2(PO4)3, with A1PO4 and GeO2 as their impurity phases.展开更多
The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of ...The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of 304 K (0.18TL ) and 286K (0.17TL ) are achieved and the dendritic growth velocities attain 39.8 and 25.1 m/s, respectively. The transition of morphology from coarse dendrite into equiaxed structure occurs and the grain size of the a (Ni) phase decreases remarkably when the undercooling increases. Both the lattice constant and microhardness increase obviously with the enhancement of undercooling. The enrichment of Cu and Sn solute contents reduces the dendritic growth velocity, while enhances the lattice constant and microhardness of a (Ni) phase.展开更多
Nylon 10T and nylon 10T/1010 samples were synthesized by direct melt polymerization.The isothermal crystallization kinetics of nylon 10T and nylon 10T/1010 was investigated by means of differential scanning calorimetr...Nylon 10T and nylon 10T/1010 samples were synthesized by direct melt polymerization.The isothermal crystallization kinetics of nylon 10T and nylon 10T/1010 was investigated by means of differential scanning calorimetry(DSC).The crystallization kinetics under isothermal condition has been analyzed by the Avrami equation.It was found that the Avrami equation was well-suited to describe the isothermal crystallization kinetics,combined with the results of the Turnbull-Fisher equation.The values of Tm^0 and Kg were obtained by Hoffman-Weeks and Lauritzen-Hoffman equations,respectively.The activation energies for isothermal crystallization of nylon 10T and nylon 10T/1010 were determined using the Arrhenius equation and found to be-123.24 and-81.86 kJ·mol^(-1),respectively,which reveals that the crystallization ability of nylon 10T/1010was lower than that of nylon 10T during the isothermal crystallization process.The crystal morphology was observed by means of polarized optical microscopy(POM)and X-ray diffraction(XRD).It was found that the addition of sebacic acid comonomer did not change the crystal form of nylon 10T,but significantly increased the number and decreased the size of spherulites.展开更多
The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was f...The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was found that the apparent activation energy Eg, Ex and Ep of the BMG calculated by Kissinger's method were 189.58, 170.68 and 170.41 kJ·mol^-1, respectively, which was bigger than those of La55Al25Cu10Ni5Co5 BMG indicating that thermal stability of the former was higher than that of the latter. The local activation energy obtained using Ozawa equation decreased as crystallization proceeded except for the initial stage. The Avrami exponents were calculated to be in the range of 3.26 - 5.23 for different crystallization stages and isothermal temperatures. This implied that crystallization of Mm55Al25Cu10Ni5Co2 BMG was governed by diffusion-controlled three-dimensional growth with either reduced or increased nucleation rate, depending on isothermal temperature. Inconsistency of thermal stability with glass-forming ability for Mm(La)-Al-Cu-Ni-Co BMGs was discussed.展开更多
The influence of Ultrafine Full-Vulcanized Acrylate Powdered Rubber(UFAPR) on the isothermal crystallization kinetics and nonisothermal crystallization behavior of PA6 has been studied by means of DSC. The results sho...The influence of Ultrafine Full-Vulcanized Acrylate Powdered Rubber(UFAPR) on the isothermal crystallization kinetics and nonisothermal crystallization behavior of PA6 has been studied by means of DSC. The results show that with the introduction of a small amount of UFAPR, the crystallization rate of PA6 can be increased obviously, and the crystallization temperature range can be augmented and the crystallite size distribution of the crystal can be narrowed down. The change of free energy perpendicular to the crystal nucleus, which has been calculated according to the Hoffman theory, is consistent with the result of Avrami′s equation. The unit surface free energy of the radial-developing crystal spherulite decreases while the crystallization rate of PA6 increases with the introduction of UFAPR. Meanwhile, it is shown by means of the polarizing microscope(PLM) that the crystal size drops down and the number of the crystal grains augments with the addition of UFAPR, which shows that UFAPR can function as a nucleating agent.展开更多
The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by J...The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples. The difference in the exponent n between PP and PP/anhydrite composites indicated that non-isothermal kinetic crystallization corresponded to tri-dimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and PP/anhydrite composites, but the crystallization rate of PP/anhydrite composites was faster than that of PP at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PP very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The result showed that the activation energy of PP/anhydrite was greatly larger than that of PP.展开更多
Amorphous ribbons of the alloy Fe73.5 Si13.5B9Cu1Nb1V2 were prepared by the standard single copper wheel melt spinning technique in the air atmosphere. The crystallization kinetics of amorphous ribbons was analyzed by...Amorphous ribbons of the alloy Fe73.5 Si13.5B9Cu1Nb1V2 were prepared by the standard single copper wheel melt spinning technique in the air atmosphere. The crystallization kinetics of amorphous ribbons was analyzed by non-isothermal differential scanning calorimetry (DSC) measurements. The crystallization activation energies of amorphous ribbons calculated by using Kissinger model were 364 and 337 kJ/mol for the first and the second crystallization, respectively. The Avrami exponent n was calculated from the Johnson- Mehl-Avrami ( MA) equation. The value of the Avrami exponent showed that the crystallization mechanism in the non-isothermal primary crystallization of amorphous ribbons was all shapes growing from small dimensions controlled by diffusion at decreasing nuclectcn rate. The variation of soft magnetic properties of nanocrystalline Fe73.5 Si13.5B9Cu1Nb1V2 alloy powder cores s a tunction of milling times has been investigated. It is found that the effective permeability of the cores shows high frequency stability and decreases with the increase of milling times. The quality factor increases with increasing frequency in lower frequency range, and reaches a maximum at the frequency of 80 kHz then decreases gradually with increasing frequency.展开更多
The crystallization kinetics of an amorphous Ti-rich NiTi film (Ni 46.34at.%, Ti 53.66at.%)prepared by DC magnetron sputtering was determined by non-isothermal techniques. The activation energy of crystallization and ...The crystallization kinetics of an amorphous Ti-rich NiTi film (Ni 46.34at.%, Ti 53.66at.%)prepared by DC magnetron sputtering was determined by non-isothermal techniques. The activation energy of crystallization and the mean value of the Avrami parameter are 382kJ/mol and 0.85, respectively. The calculated isothermal kinetic curse of amorphous film at 773K coincides with the result of X-ray diffraction.The formation of a Ti2Ni phase is accompanied with the crystallization of Ti-rich NiTi film.展开更多
基金supports from National Natural Science Foundation of China(21938009,22308358,22208346,22078332)National Key Research and Development Program(2022YFC3902701)+2 种基金Ningxia Natural Science Foundation(2021AAC01002)the External Cooperation Program of BIC,Chinese Academy of Sciences(122111KYSB20190032)CAS Project for Young Scientists in Basic Research(YSBR-038)are gratefully acknowledged.
文摘NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O)/n(SiO_(2)))on the relative crystallinity,textural properties and crystallization kinetics were investigated.The results show that alkalinity exerts a nonmonotonic influence on the relative crystallinity and textural properties,which exhibit a maximum at the alkalinity of 0.43.The nucleation kinetics are studied by fitting the experimental data of relative crystallinity with the Gualtieri model.It is shown that the nucleation rate constant increases with increasing alkalinity,while the duration period of nucleation decreases with increasing alkalinity.For n(Na_(2)O)/n(SiO_(2))ratios ranging from 0.38 to 0.55,the as-synthesized NaY zeolites exhibit narrower crystal size distributions with the increase in alkalinity.The growth rates determined from the variations of average crystal size with time are 51.09,157.50,46.17 and 24.75 nm·h^(-1),respectively.It is found that the larger average crystal sizes at the alkalinity of 0.38 and 0.43 are attributed to the dominant role of crystal growth over nucleation.Furthermore,the combined action of prominent crystal growth and the longer duration periods of nucleation at the alkalinity of 0.38 and 0.43 results in broader crystal size distributions.The findings demonstrate that control of the properties of NaY zeolite and the crystallization kinetics can be achieved by conducting the crystallization process in an appropriate range of alkalinity of the reaction mixture.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.
基金financial support from the Natural Science Foundation of Guizhou Province (Grant No. ZK 2024-087)Natural Science Foundation of China (no. 22005071)。
文摘The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.
基金Funded by State Key Laboratory of Silicate Materials for Ar-chitectures(Wuhan University of Technology)(No.2011DA105356)。
文摘In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ratio and heat treatment on crystallization and mechanical properties were studied.The crystallization kinetics and X-Ray Diffraction(XRD)results showed that SiO_(2)/Al_(2)O_(3) ratio and heat treatment system had a direct impact on the crystallization behavior of potassium aluminosilicate glass-ceramics.When heat-treated at 680℃/2 h and 780℃/1 h,cracks generated on the surface of the sample with the addition of SiO_(2)/Al_(2)O_(3)=4.8(in mol)due to the huge difference in the coefficient of thermal expansion between glass matrix and surface.When the addition of SiO_(2)/Al_(2)O_(3)(in mol)was 4,the sample with leucite as the main crystalline phase showed an excellent fracture toughness(1.46 MPa·m^(0.5))after the heat treatment of 680℃/2 h and 780℃/5 h.And there was a phase transformation from kaliophilite to leucite.The crystalline phases of the sample heat-treated at 680℃/8 h and 780℃/1 h were leucite and kaliophilite,which resulted in the visible light transmittance of 63%and the fracture toughness of 0.91 MPa·m^(0.5).Furthermore,after the heat treatment of 680℃/2 h and 780℃/5 h,the main crystalline phase of the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol)was still kaliophilite.Because leucite only grows on the surface of the sample and is hard to grow inward,it is hard to achieve the bulk crystallization of leucite in the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol).
基金Project (50804032) supported by the National Natural Science Foundation of ChinaProject (2008011046) supported by the Natural Science Foundation of Shanxi Province, ChinaProject (20080321036) supported by the Key Technologies R & D Program of Shanxi Province, China
文摘The microstructure of as-cast Zr60Al15Ni25 bulk metallic glass was investigated by high-resolution transmission electron microscopy. It is found that there exist numerous short-range order regions (SRORs) in the metallic glass though it is identified to be amorphous by X-ray diffraction method. Furthermore, the amorphous degree shows a close correlation with the microstructure of corresponding mother ingot. The crystallization kinetics was investigated by differential scanning calorimetry under isochronal and isothermal conditions. The results show that the crystallization is triggered by the growth of the pre-existing SRORs and the growth is three-dimension diffusion-controlled. The amorphous degree of Zr60Al15Ni25 bulk metallic glass considerably influences its crystallization kinetics, namely, the more homogeneous distribution of atoms results in a more sluggish nucleation behavior.
基金Project (1006-56Y1064) supported by the Nanjing University of Aeronautics and Astronautics Research Funding, China
文摘0.5% (molar fraction) Sb was added to Mg61Cu28Gd11 glass forming alloy to improve its thermal stability and corrosion resistance. The crystallization kinetics of Mg61Cu28Gd11 and (Mg0.61Cu0.28Gd0.11)99.5Sb0.5 amorphous alloys was investigated under continuous heating. The temperatures of glass transition, onset and peak crystallization for the two glasses exhibit strong heating-rate dependence. The activation energies for the onset and peak crystallization were determined based on the Oawza plots. Vogel-Fulcher-Tamman equation analysis shows that the larger strength parameter and much longer relaxation time are obtained due to the Sb addition. The corrosion properties of the two glassy alloys were studied by means of potentiodynamic and immersion tests. Compared with the parent alloy, (Mg0.61Cu0.28Gd0.11)99.5Sb0.5 glassy alloy exhibits a superior corrosion resistance in Cl--containing alkaline solution, as indicated by the lower passive current density and corrosion rate. Based on the point defect model, the effect mechanism of Sb addition on corrosion resistance of Mg-Cu-Gd glassy alloy is carefully identified.
基金Supported by the Natural Science Foundation of Zhejiang Province(LY15B060006)the National Natural Science Foundation of China(21104066)the Zhejiang Province Public Technology Research and Industrial Grant(2012C21078)
文摘Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.
基金Supported by the National Science and Technology Support Program of China(No.2013BAE02B01)the Special Project on the Integration of Industry,Education and Research of Guangdong Province(No.2013B090500003)the Commissioner Workstation Project of Guangdong Province(No.2014A090906002)
文摘Nylon 10 T and Nylon 10T/1010 samples were synthesized by direct melt polymerization. The non-isothermal crystallization kinetics of Nylon 10 T and Nylon 10T/1010 was investigated by means of differential scanning calorimetry(DSC). Jeziorny equation and Mo equation were applied to describe the non-isothermal crystallization kinetics of the Nylon 10 T and the Nylon 10T/1010. The activation energies for non-isothermal crystallization were obtained by Vyazovkin's method and Friedman's method, respectively. These results showed that Jeziorny equation and Mo equation well described the non-isothermal crystallization kinetics of the Nylon 10 T and the Nylon 10T/1010. It was found that the values of the activation energy for non-isothermal crystallization of the Nylon 10T/1010 were lower than those of the Nylon 10 T at a given temperature or relative crystallinity degree,which revealed that crystallization ability of the Nylon 10T/1010 was higher. The crystal morphology was observed by means of a polarized optical microscope(POM) and X-ray diffraction(XRD). It was found that the addition of sebacic acid comonomer not only did not change the crystal form of the Nylon 10 T, but also significantly increased the number and decreased the size of spherulites. Comparing with the Nylon 10 T, the crystallization rate was increased with the addition of the sebacic acid comonomer.
基金Project(51308086)supported by the National Natural Science Foundation of ChinaProject(LJQ2015020)supported by the Program for Liaoning Excellent Talents in University,ChinaProject(2016RQ051)supported by the Program of Science-Technology Star for Young Scholars by the Dalian Municipality,China
文摘Wollastonite glass ceramics were prepared using the reactive crystallization sintering method by mixing waste glass powders with gehlenite.The crystallization property,thermodynamics,and kinetics of the prepared wollastonite glass ceramics were determined by X-ray diffraction analysis,scanning electron microscopy,energy-dispersive spectroscopy,high-resolution transmission electron microscopy,and differential thermal analysis.Results showed that crystals of wollastonite and alumina could be found in the gehlenite through its reaction with silicon dioxide.The wollastonite crystals showed a lath shape with a certain length-to-diameter ratio.The crystals exhibited excellent bridging and reinforcing effects.In the crystallization process,the aluminum ions in gehlenite diffused into the glass and the silicon ions in the glass diffused into gehlenite.Consequently,the three-dimensional frame structure of gehlenite was partially damaged to form a chain-like wollastonite.The results of crystallization thermodynamics and kinetics indicated that crystallization reaction could occur spontaneously under a low temperature(1173 K),with 20 wt%gehlenite added as the reactive crystallization promoter.The crystallization activation energy was evaluated as 261.99 kJ/mol by using the Kissinger method.The compression strength of the wollastonite glass ceramic samples(7.5 cm×7.5 cm)reached 251 MPa.
基金This work was supported by the Tianjin Youth Science Foundation for the 21th Century,Tianjin,China.
文摘The classical crystallization theories proposed by Avrami, Evans, and Mandelkern wereextended to the nonisothermal situation. The expressions derived from the classical equations canbe expressed in either the differential form or the integral form. A method was provided so as toobtain the parameters characterizing the crystallization rate and mechanism from DSC curves withseveral constant heating or cooling rates. The rate constants of crystallization obtained from bothisothermal and nonisothermal curves of poly(ethylene terephthalate)were compared.
基金Guoxin Sui would like to acknowledge the financial supports of the Hundreds’ Talents Program of Chinese Academy of Sciences.
文摘The non-isothermal crystallization kinetics of polyamide 6/diamine-modified multi-walled carbon nanotube (PA6/D-MWNT) nanocomposite was investigated by differential scanning calorimetry (DSC). The modified Avrami equation, the Ozawa equation and the combined Avrami/Ozawa equation were employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. It was found that the combined Avrami/Ozawa equation could successfully describe the non-isothermal crystallization process. The results showed that D-MWNTs not only acted as effective heterogeneous nucleating agents for PA6 and noticeably increased the crystallization temperature of PA6, but also influenced the mechanism of nucleation and crystal growth of PA6 and then reduced the overall crystallization rate of the neat PA6 matrix. The crystallization activation energy for the nanocomposite sample was greater than that of the neat PA6, which indicated that the addition of D-MWNTs hindered the mobility of PA6 chain segments.
文摘Crystallization kinetics of metastable B-quartz solid solution as a desirable phase for the production of trans- parent lithium aluminosilicate (LAS) glass ceramics was investigated in the presence of Y203. Accordingly, differential thermal analysis scans were performed thoroughly to study the mechanism of crystallization kinetics. The aim of this investigation is to discover the complicated mechanism of crystallization process in the presence of co-additives and ac- cordingly find a way for increasing the transparency of glass ceramics. It is shown that the bulk (3D) growth is intensively increased by the enhancement of Y203. Then again, reducing nucleation and increasing growth mechanisms were recog- nized for the LAS system in the presence of Y2O3. Results of the investigation illustrate that when co-additives are added to glasses, it is necessary to nucleate the optical component separately before the growth process.
基金National Natural Science Foundation of China (NSFC) (No. 60808024)
文摘Abstract: The crystallization kinetics of Li20-A12O3-GeO2-P205 (LAGP) glass fabricated via the conventional melt-quenching method was studied by differential scanning calorimetry (DSC) under non- isothermal condition at different heating rates. The activation energy of glass transition Eg is 634.4 kJ/mol, indicating that LAGP glass is easy to crystallize at an elevated temperature. The activation energy of crystallization Eo and Avrami index n obtained from Matusita's model are 442.01 kJ/mol and 1.7, respectively. The value of n reveals that bulk crystallization predominates slightly over surface crystallization during crystallization process. LAGP glass-ceramics after different heat treatments have the same crystalline phases determined as major phase LiGe2(PO4)3, with A1PO4 and GeO2 as their impurity phases.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51327901 and 51301138the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20126102120064+1 种基金the Aviation Science Foundation of China under Grant No 2014ZF53069the Fundamental Research Funds for the Central Universities under Grant No3102014KYJD044
文摘The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of 304 K (0.18TL ) and 286K (0.17TL ) are achieved and the dendritic growth velocities attain 39.8 and 25.1 m/s, respectively. The transition of morphology from coarse dendrite into equiaxed structure occurs and the grain size of the a (Ni) phase decreases remarkably when the undercooling increases. Both the lattice constant and microhardness increase obviously with the enhancement of undercooling. The enrichment of Cu and Sn solute contents reduces the dendritic growth velocity, while enhances the lattice constant and microhardness of a (Ni) phase.
基金Supported by the National Science and Technology Support Program of China(No.2013BAE02B01)the Special Project on the Integration of Industry,Education and Research of Guangdong Province(No.2013B090500003)the Commissioner Workstation Project of Guangdong Province(No.2014A090906002)
文摘Nylon 10T and nylon 10T/1010 samples were synthesized by direct melt polymerization.The isothermal crystallization kinetics of nylon 10T and nylon 10T/1010 was investigated by means of differential scanning calorimetry(DSC).The crystallization kinetics under isothermal condition has been analyzed by the Avrami equation.It was found that the Avrami equation was well-suited to describe the isothermal crystallization kinetics,combined with the results of the Turnbull-Fisher equation.The values of Tm^0 and Kg were obtained by Hoffman-Weeks and Lauritzen-Hoffman equations,respectively.The activation energies for isothermal crystallization of nylon 10T and nylon 10T/1010 were determined using the Arrhenius equation and found to be-123.24 and-81.86 kJ·mol^(-1),respectively,which reveals that the crystallization ability of nylon 10T/1010was lower than that of nylon 10T during the isothermal crystallization process.The crystal morphology was observed by means of polarized optical microscopy(POM)and X-ray diffraction(XRD).It was found that the addition of sebacic acid comonomer did not change the crystal form of nylon 10T,but significantly increased the number and decreased the size of spherulites.
基金Project supported by the National Natural Science Foundation of Liaoning Province (20032137)
文摘The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was found that the apparent activation energy Eg, Ex and Ep of the BMG calculated by Kissinger's method were 189.58, 170.68 and 170.41 kJ·mol^-1, respectively, which was bigger than those of La55Al25Cu10Ni5Co5 BMG indicating that thermal stability of the former was higher than that of the latter. The local activation energy obtained using Ozawa equation decreased as crystallization proceeded except for the initial stage. The Avrami exponents were calculated to be in the range of 3.26 - 5.23 for different crystallization stages and isothermal temperatures. This implied that crystallization of Mm55Al25Cu10Ni5Co2 BMG was governed by diffusion-controlled three-dimensional growth with either reduced or increased nucleation rate, depending on isothermal temperature. Inconsistency of thermal stability with glass-forming ability for Mm(La)-Al-Cu-Ni-Co BMGs was discussed.
基金Supported by the National Natural Science Foundation of China( No.5 99730 0 3)
文摘The influence of Ultrafine Full-Vulcanized Acrylate Powdered Rubber(UFAPR) on the isothermal crystallization kinetics and nonisothermal crystallization behavior of PA6 has been studied by means of DSC. The results show that with the introduction of a small amount of UFAPR, the crystallization rate of PA6 can be increased obviously, and the crystallization temperature range can be augmented and the crystallite size distribution of the crystal can be narrowed down. The change of free energy perpendicular to the crystal nucleus, which has been calculated according to the Hoffman theory, is consistent with the result of Avrami′s equation. The unit surface free energy of the radial-developing crystal spherulite decreases while the crystallization rate of PA6 increases with the introduction of UFAPR. Meanwhile, it is shown by means of the polarizing microscope(PLM) that the crystal size drops down and the number of the crystal grains augments with the addition of UFAPR, which shows that UFAPR can function as a nucleating agent.
文摘The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples. The difference in the exponent n between PP and PP/anhydrite composites indicated that non-isothermal kinetic crystallization corresponded to tri-dimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and PP/anhydrite composites, but the crystallization rate of PP/anhydrite composites was faster than that of PP at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PP very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The result showed that the activation energy of PP/anhydrite was greatly larger than that of PP.
基金Funded by the State Key Lab of Advanced Metals and Materials(No.2011-ZD03)The Hubei Provincial Department of Education(No.D20111103)
文摘Amorphous ribbons of the alloy Fe73.5 Si13.5B9Cu1Nb1V2 were prepared by the standard single copper wheel melt spinning technique in the air atmosphere. The crystallization kinetics of amorphous ribbons was analyzed by non-isothermal differential scanning calorimetry (DSC) measurements. The crystallization activation energies of amorphous ribbons calculated by using Kissinger model were 364 and 337 kJ/mol for the first and the second crystallization, respectively. The Avrami exponent n was calculated from the Johnson- Mehl-Avrami ( MA) equation. The value of the Avrami exponent showed that the crystallization mechanism in the non-isothermal primary crystallization of amorphous ribbons was all shapes growing from small dimensions controlled by diffusion at decreasing nuclectcn rate. The variation of soft magnetic properties of nanocrystalline Fe73.5 Si13.5B9Cu1Nb1V2 alloy powder cores s a tunction of milling times has been investigated. It is found that the effective permeability of the cores shows high frequency stability and decreases with the increase of milling times. The quality factor increases with increasing frequency in lower frequency range, and reaches a maximum at the frequency of 80 kHz then decreases gradually with increasing frequency.
基金the National Natural Science FouThdation of China !(GrantWb. 59vs1030)
文摘The crystallization kinetics of an amorphous Ti-rich NiTi film (Ni 46.34at.%, Ti 53.66at.%)prepared by DC magnetron sputtering was determined by non-isothermal techniques. The activation energy of crystallization and the mean value of the Avrami parameter are 382kJ/mol and 0.85, respectively. The calculated isothermal kinetic curse of amorphous film at 773K coincides with the result of X-ray diffraction.The formation of a Ti2Ni phase is accompanied with the crystallization of Ti-rich NiTi film.