The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers iso...The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pro- nounced strain gradients occur in the grain boundary region even under homo- geneous loading. The isotropic hardening of strain gradients strongly influences the global stress-strain diagram while the kinematic hardening of strain gradi- ents influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.展开更多
Two alternative formulations of single crystal plasticity model were introduced respectively and two schemes were implemented in the explicit FE code with software ABAQUS/Explicit by writing the user subroutine VUMAT....Two alternative formulations of single crystal plasticity model were introduced respectively and two schemes were implemented in the explicit FE code with software ABAQUS/Explicit by writing the user subroutine VUMAT.Meshes containing material data were created with solid elements.Each element represented an individual grain,and the grain orientations were explicitly stored and updated at each increment.Tangential modulus method was employed to calculate the plastic shear strain increment of deformation systems in combination with a hardening law to describe the hardening responses.Both two developed subroutines were applied to simulate the texture evolution during the uniaxial tension of copper(FCC),cold rolling of IF steel(BCC) and uniaxial compression of AZ31 magnesium alloy(HCP).The predicted texture distributions are in qualitative agreement with the experimental results.展开更多
Considering the effects of osmotic pressure, elastic bending, Maxwell pressure, surface tension, as well as flexo-electric and dielectric properties of phospholipid membrane, the shape equation for sphere vesicle in a...Considering the effects of osmotic pressure, elastic bending, Maxwell pressure, surface tension, as well as flexo-electric and dielectric properties of phospholipid membrane, the shape equation for sphere vesicle in alternation (AC) electric field is derived based on the liquid crystal model by minimizing the free energy due to coupled mechanical and AC electrical fields. Besides the effect of elastic bending, the influence of osmotic pressure and surface tension on the frequency dependent behavior of vesicle membrane in AC electric field is also discussed. Our theoretical results for membrane deformation are consistent with corresponding experiments. The present model provides the possibility to further disclose the frequency-depended behavior of biological cells in the coupled AC electric and different mechanical fields.展开更多
Growth of gallium nitride(GaN)inverted pyramids on c-plane sapphire substrates is benefit for fabricating novel devices as it forms the semipolar facets.In this work,GaN inverted pyramids are directly grown on c-plane...Growth of gallium nitride(GaN)inverted pyramids on c-plane sapphire substrates is benefit for fabricating novel devices as it forms the semipolar facets.In this work,GaN inverted pyramids are directly grown on c-plane patterned sapphire substrates(PSS)by metal organic vapor phase epitaxy(MOVPE).The influences of growth conditions on the surface morphol-ogy are experimentally studied and explained by Wulff constructions.The competition of growth rate among{0001},{1011},and{1122}facets results in the various surface morphologies of GaN.A higher growth temperature of 985 ℃ and a lowerⅤ/Ⅲratio of 25 can expand the area of{}facets in GaN inverted pyramids.On the other hand,GaN inverted pyramids with almost pure{}facets are obtained by using a lower growth temperature of 930℃,a higherⅤ/Ⅲratio of 100,and PSS with pattern arrangement perpendicular to the substrate primary flat.展开更多
The growth behavior of a spherical particle in undercooled melt,affected by uniaxial straining flows,is studied.The analytical solution obtained by the matched asymptotic expansion method shows that the uniaxial strai...The growth behavior of a spherical particle in undercooled melt,affected by uniaxial straining flows,is studied.The analytical solution obtained by the matched asymptotic expansion method shows that the uniaxial straining flow effect results in higher local growth rate near the surface where the flow comes in and lower local growth rate near the surface where the flow goes out,and that the uniaxial straining flow causes an initially spherical particle to evolve into an oblate spheroid.展开更多
In order to study synergism of the mixed surfactants system with molecular exchanging energy (E), the Lennard-Jones formula has been firstly introduced to evaluate the E of the mixed system, CH3(CH2)nOSO 3 /CH3(CH2)nN...In order to study synergism of the mixed surfactants system with molecular exchanging energy (E), the Lennard-Jones formula has been firstly introduced to evaluate the E of the mixed system, CH3(CH2)nOSO 3 /CH3(CH2)nN+(CH3)3 directly from their molecular structure. The comparison of the calculated and the observed results showed that this method is practical.展开更多
The phase field crystal(PFC) model is a nonlinear evolutionary equation that is of sixth order in space.In the first part of this work,we derive a three level linearized difference scheme,which is then proved to be en...The phase field crystal(PFC) model is a nonlinear evolutionary equation that is of sixth order in space.In the first part of this work,we derive a three level linearized difference scheme,which is then proved to be energy stable,uniquely solvable and second order convergent in L_2 norm by the energy method combining with the inductive method.In the second part of the work,we analyze the unique solvability and convergence of a two level nonlinear difference scheme,which was developed by Zhang et al.in 2013.Some numerical results with comparisons are provided.展开更多
Low ductility and strength are major bottlenecks against Mg alloys’wide applications.In this work,we systematically design the composition and fabrication process for a low-alloyed Mg-Zn-Ca alloy,showing that it can ...Low ductility and strength are major bottlenecks against Mg alloys’wide applications.In this work,we systematically design the composition and fabrication process for a low-alloyed Mg-Zn-Ca alloy,showing that it can be extruded at low temperatures(~250℃)and high speeds(~2 mm/s).After the extrusion,this alloy exhibits a substantially weakened basal texture,relatively small grain size,very high tensile elongation(~30%),and good strength.The origin of the considerably improved ductility was studied using a combination of three-dimensional atom probe tomography(3D-APT),transmission electron microscopy(TEM),electron backscattered diffraction(EBSD)in conjunction with surface slip trace analysis,in-situ synchrotron X-ray diffraction,and elasto-plastic self-consistent(EPSC)modeling.Co-segregation of Zn and Ca atoms at a grain boundary is observed and associated with texture weakening and grain boundary mediated plasticity,both improving the ductility.While basal slip and prismatic slip are identified as the dominant deformation systems in the alloy,the ratio between their slip resistances is substantially reduced relative to pure Mg and most other Mg alloys,significantly contributing to the improved ductility of the alloy.This Mg-Zn-Ca alloy exhibiting excellent mechanical properties and low fabrication cost is a promising candidate for industrial productions.展开更多
The phase field crystal (PFC) model is used to simulate the premelting dislocation movement of the symmetric tilt grain boundary (STGB) under strain action when the system temperature is at far from the melting po...The phase field crystal (PFC) model is used to simulate the premelting dislocation movement of the symmetric tilt grain boundary (STGB) under strain action when the system temperature is at far from the melting point and close to the melting point, respectively. The results show a local premelting occurs surrounding the dislocations as the premelting temperature is approached to from below temperature. The premelting dislocations of the STGB can glide under strain action, and the premelting region is a companion for dislocation gliding. The process of STGB decay is very similar at the two high temperature conditions. As premelting presents, it diminishes the gliding resistance for the dislocations and leads to a faster movement of dislocations, and also brings about more energy reduction of the system during the decay process of STGB. In spite of applying strain to these premelting samples in whole decay processes of STGB, the premelting dislocation region does not obviously develop and extend. This indicates that the external strain action does not promote the premelting at the high temperature, and cannot induce more premelting dislocation, which can be owed to the premelting phase around the dislocation exhibit fluid-like properties and to the premelting dislocation easily gliding and relaxing the strain energy; this is in agreement with the results of experiments and molecular dynamics.展开更多
Uniaxial ratcheting behaviour and low cycle fatigue(LCF)failure mechanism of nickel-based single crystal superalloy DD6 with[001]orientation are investigated through the stresscontrolled LCF tests with stress ratio of...Uniaxial ratcheting behaviour and low cycle fatigue(LCF)failure mechanism of nickel-based single crystal superalloy DD6 with[001]orientation are investigated through the stresscontrolled LCF tests with stress ratio of-1.Then the deformation behaviour during the wholelifetime from the beginning of the experiment to the fracture of the specimen,as well as the fractographic/metallographic morphology,are compared with the strain-controlled LCF experimental results.Through the scanning electron microscope(SEM)observations,it is shown that the failure characteristics under stress-controlled LCF loading are similar with those under strain-controlled loading.Nevertheless,unlike strain-controlled LCF loading,even under fully reversed cycle loading for stress-controlled LCF,DD6 shows significant ratcheting behaviour due to the tensioncompression asymmetry.In addition,the LCF lifetimes under stress control are significantly shorter than the LCF lifetimes under strain control,and the culprit might be the detrimental effect of ratcheting strain on LCF lifetime.Based on these phenomena,an improved crystal plasticity constitutive model on the basis of slip-based Walker constitutive model is developed through modifying the kinematic hardening rule in order to overcome the inaccurate prediction of decelerating stageand stable stage of ratcheting behaviour.Furthermore,combining the continuum damage mechanics,a damage-coupled crystal plasticity constitutive model is proposed to reflect the damage behaviour of DD6 and the accelerating stage of ratcheting behaviour.The simulation results for the stress-controlled LCF deformation behaviour including the whole-lifetime ratcheting behaviour show good agreement with the experimental data.展开更多
Crystallization kinetics of Fe52Cr18Mo7B16C4Nb3 alloy was evaluated by X-ray diffraction(XRD),differential scanning calorimetric(DSC) tests and transmission electron microscopy(TEM) observations in this research...Crystallization kinetics of Fe52Cr18Mo7B16C4Nb3 alloy was evaluated by X-ray diffraction(XRD),differential scanning calorimetric(DSC) tests and transmission electron microscopy(TEM) observations in this research work.In effect,crystallization and growth mechanism were investigated by using DSC tests at four different heating rates(10,20,30,40 K/min).Results showed that a two-step crystallization process occurred in the alloy in which α-Fe and Fe3B phases were crystallized,respectively in the structure after heat treatment.Activation energy for the first step of crystallization,i.e.α-Fe was measured to be 421 and 442 kJ/mol according to Kissinger-Starink and Ozawa models,respectively.Further,Avrami exponent calculated from DSC curves was 1.6 and a two-dimensional diffusion controlled growth mechanism with decreasing nucleation rate was observed in the alloy.Moreover,it was known from the TEM observations that crystalline α-Fe phase nucleated in the structure of the alloy in an average size of 10 nm and completely mottled morphology.展开更多
The complex micromechanical response among grains remains a persistent challenge to understand the deformation mechanism of titanium alloys during cold rolling.Therefore,in this work,a multiscale crystal plasticity fi...The complex micromechanical response among grains remains a persistent challenge to understand the deformation mechanism of titanium alloys during cold rolling.Therefore,in this work,a multiscale crystal plasticity finite element method of dual-phase alloy was proposed and secondarily developed based on LS-DYNA software.Afterward,the texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy,based on the realistic 3D microstructure,during cold rolling(20%thickness reduction)were systematically investigated.The relative activity of the■slip system in theαphase gradually increased,and then served as the main slip mode at lower Schmid factor(<0.2).In contrast,the contribution of the■slip system to the overall plastic deformation was relatively limited.For theβphase,the relative activity of the<111>{110}slip system showed an upward tendency,indicating the important role of the critical resolved shear stress relationship in the relative activity evolutions.Furthermore,the abnormally high strain of very fewβgrains was found,which was attributed to their severe rotations compelled by the neighboring pre-deformedαgrains.The calculated pole figures,rotation axes,and compelled rotation behavior exhibited good agreement to the experimental results.展开更多
A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation dur...A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation during solidification was researched.In the present work,these analytical methods were further extended.Combined with an original vectorization method,a 3D Rosenthal solution was used to determine thermal conditions of the welds.Afterward,the dendrite growth orientation,the dendrite growth velocity and the thermal gradient along dendrite direction were calculated and lively plotted.Finally,the tendency of stray grains formation in the solidification front was forecasted and its distribution was presented with a 3D plot.The results indicate that substrate orientation has some impacts on the crystal growth pattern,dendrite growth velocity,distribution of thermal gradient and stray grain.Based on the research methods proposed in this work,any substrate crystallographic orientation can be studied,and predicted stray grains distribution can be visualized.展开更多
In this paper,the research framework for specific structure crystallization modeling has been proposed in which four steps are required in order to investigate the rigorous crystallization modeling by thermodynamics.T...In this paper,the research framework for specific structure crystallization modeling has been proposed in which four steps are required in order to investigate the rigorous crystallization modeling by thermodynamics.The first is the activity coefficient model of the solution,the second is Solid-Liquid equilibrium,the third and fourth are the dissolution and crystallization kinetics modeling,respectively.Our investigations show that the mechanisms of complex structure formation and microphase transition can be analyzed by combining the dissolution and crystallization kinetics modeling.Moreover,the formation mechanism of the porous KCl has been analyzed,which may provide a reference for the porous structure formation in the advanced material synthesis.展开更多
In this paper,we present a finite element algorithm for the time-dependent nematic liquid crystal flow based on the Gauge-Uzawa method.This algorithm combines the Gauge and Uzawa methods within a finite element variat...In this paper,we present a finite element algorithm for the time-dependent nematic liquid crystal flow based on the Gauge-Uzawa method.This algorithm combines the Gauge and Uzawa methods within a finite element variational formulation,which is a fully discrete projection type algorithm,whereas many projection methods have been studied without space discretization.Besides,error estimates for velocity and molecular orientation of the nematic liquid crystal flow are shown.Finally,numerical results are given to show that the presented algorithm is reliable and confirm the theoretical analysis.展开更多
The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative...The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative hole size/was studied.展开更多
An in-depth understanding of the crystal orientation evolution during hot rolling of TiB whisker(TiBw)/TA15 composites and the anisotropy of the as-rolled plates can help fully utilize the material proper-ties.In this...An in-depth understanding of the crystal orientation evolution during hot rolling of TiB whisker(TiBw)/TA15 composites and the anisotropy of the as-rolled plates can help fully utilize the material proper-ties.In this paper,the crystal plasticity finite element models of high-temperature(HT)β-phase and room-temperature(RT)α-phase were constructed from electron backscattering diffraction data.Based on this,the orientation evolution during hot rolling in the single-phase region and the effects of the matrix texture on the mechanical properties of the as-rolled plates were analyzed.The effect of TiBw on the anisotropy was studied by the composites finite element model.Results showed that theα-fiber texture of theβ-phase was formed during HT rolling.This texture was converted to the T-texture of theα-phase at RT during cooling according to the Burgers orientation relationships.The TiBw had little effect on the matrix texture composition.The TiBw and matrix texture caused the matrix to have higher strength along the rolling direction and the transverse direction,respectively.The matrix texture dominated the difference in mechanical properties because its effect exceeded that of TiBw.The effect of the matrix on the mechanical properties was caused by the Schmid factors(SFs)and the critical resolved shear stress(CRSS)of the slip system together.The slip mode was influenced by SFs determined by the angular rela-tionship between the crystal orientation and the loading direction.The CRSS of the activated slip system determined the yield strength.展开更多
We present simulations of the mechanism of secondary nucleation of polymer crystallization,based on a new model accounting for the microscopic kinetics of attaching and detaching.As the key feature of the model,we int...We present simulations of the mechanism of secondary nucleation of polymer crystallization,based on a new model accounting for the microscopic kinetics of attaching and detaching.As the key feature of the model,we introduced multibody-interaction parameters that establish correlations between the attaching and detaching rate constants and the resulting thickness and width of the crystalline lamella.Using MATLAB and Monte Carlo method,we followed the evolution of the secondary nuclei as a function of various multibody-interaction parameters.We identified three different growth progressions of the crystal:(i) Widening,(ii) thickening and(iii) simultaneously thickening and widening of lamellar crystals,controlled by the corresponding kinetic parameters.展开更多
Crystal caking is a decisive factor affecting the quality of high-end fine chemicals,whereas lack of shape-to-caking understanding results in considerable waste of time,severely delaying high-end fine chemical develop...Crystal caking is a decisive factor affecting the quality of high-end fine chemicals,whereas lack of shape-to-caking understanding results in considerable waste of time,severely delaying high-end fine chemical development.On this basis,a morphology-based caking evaluation model is developed with 74%and 96%time savings compared to previous modeling and non-modeling experiments,respectively,while guaranteeing superior accuracy.The crystal morphology is expressed as a function of the aspect ratio and the particle size distribution.The quantitative relationships between these parameters and the caking tendency are deduced,firstly achieving morphology anti-caking criterion establishment.For D-allulose crystals,considering humidity,and particle size,an aspect ratio is below 3 is the standard for combating caking,which has not been reported previously.Herein,the specific effect of crystal morphology on caking behavior is quantitatively described.The knowledge obtained can be applied to rapidly and quantitatively design anti-caking storage systems for products in warehouses.展开更多
The characteristic crystal model is applied to the study of phase stability and thermodynamics in substitutional bcc-based Ta-W alloys.The basic principle and method of alloy thermodynamics which is described by the c...The characteristic crystal model is applied to the study of phase stability and thermodynamics in substitutional bcc-based Ta-W alloys.The basic principle and method of alloy thermodynamics which is described by the characteristic crystal model is introduced in detail.The Gibbs energy of various phases including both disordered and ordered phases of the Ta-W system are evaluated.The phase diagram of Ta-W alloys is assessed and predicted.The results are in good agreement with experiments and better than that of first principle.展开更多
文摘The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pro- nounced strain gradients occur in the grain boundary region even under homo- geneous loading. The isotropic hardening of strain gradients strongly influences the global stress-strain diagram while the kinematic hardening of strain gradi- ents influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.
基金Projects (50821003,50405014) supported by the National Natural Science Foundation of ChinaProjects (10QH1401400,10520705000,10JC1407300) supported by Shanghai Committee of Science and Technology,China+1 种基金Project (NCET-07-0545) supported by Program for New Century Excellent Talents in University,ChinaProject supported by Ford University Research Program
文摘Two alternative formulations of single crystal plasticity model were introduced respectively and two schemes were implemented in the explicit FE code with software ABAQUS/Explicit by writing the user subroutine VUMAT.Meshes containing material data were created with solid elements.Each element represented an individual grain,and the grain orientations were explicitly stored and updated at each increment.Tangential modulus method was employed to calculate the plastic shear strain increment of deformation systems in combination with a hardening law to describe the hardening responses.Both two developed subroutines were applied to simulate the texture evolution during the uniaxial tension of copper(FCC),cold rolling of IF steel(BCC) and uniaxial compression of AZ31 magnesium alloy(HCP).The predicted texture distributions are in qualitative agreement with the experimental results.
基金supported by the National Natural Science Foundation of China(11272046)the Program for New Century Excellent Talents in University(NCET),and 111 Project
文摘Considering the effects of osmotic pressure, elastic bending, Maxwell pressure, surface tension, as well as flexo-electric and dielectric properties of phospholipid membrane, the shape equation for sphere vesicle in alternation (AC) electric field is derived based on the liquid crystal model by minimizing the free energy due to coupled mechanical and AC electrical fields. Besides the effect of elastic bending, the influence of osmotic pressure and surface tension on the frequency dependent behavior of vesicle membrane in AC electric field is also discussed. Our theoretical results for membrane deformation are consistent with corresponding experiments. The present model provides the possibility to further disclose the frequency-depended behavior of biological cells in the coupled AC electric and different mechanical fields.
基金the National Key Research and Development Program(2021YFA0716400)the National Natural Science Foundation of China(62225405,62350002,61991443)+1 种基金the Key R&D Project of Jiangsu Province,China(BE2020004)the Collaborative Innovation Centre of Solid-State Lighting and Energy-Saving Electronics.
文摘Growth of gallium nitride(GaN)inverted pyramids on c-plane sapphire substrates is benefit for fabricating novel devices as it forms the semipolar facets.In this work,GaN inverted pyramids are directly grown on c-plane patterned sapphire substrates(PSS)by metal organic vapor phase epitaxy(MOVPE).The influences of growth conditions on the surface morphol-ogy are experimentally studied and explained by Wulff constructions.The competition of growth rate among{0001},{1011},and{1122}facets results in the various surface morphologies of GaN.A higher growth temperature of 985 ℃ and a lowerⅤ/Ⅲratio of 25 can expand the area of{}facets in GaN inverted pyramids.On the other hand,GaN inverted pyramids with almost pure{}facets are obtained by using a lower growth temperature of 930℃,a higherⅤ/Ⅲratio of 100,and PSS with pattern arrangement perpendicular to the substrate primary flat.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10972030)the Fundamental Research Funds for the Central University (Grant No. FRF-BR-11-034B)the Overseas Distinguished Scholar Program by the Ministry of Education,China (Grant No. MS2010bjkj005)
文摘The growth behavior of a spherical particle in undercooled melt,affected by uniaxial straining flows,is studied.The analytical solution obtained by the matched asymptotic expansion method shows that the uniaxial straining flow effect results in higher local growth rate near the surface where the flow comes in and lower local growth rate near the surface where the flow goes out,and that the uniaxial straining flow causes an initially spherical particle to evolve into an oblate spheroid.
基金the State Natural Science Foundation of China(No.30070178)the Governor Foundation of Guizhou Province for their financial supports.
文摘In order to study synergism of the mixed surfactants system with molecular exchanging energy (E), the Lennard-Jones formula has been firstly introduced to evaluate the E of the mixed system, CH3(CH2)nOSO 3 /CH3(CH2)nN+(CH3)3 directly from their molecular structure. The comparison of the calculated and the observed results showed that this method is practical.
基金supported by National Natural Science Foundation of China(Grant No.11271068)
文摘The phase field crystal(PFC) model is a nonlinear evolutionary equation that is of sixth order in space.In the first part of this work,we derive a three level linearized difference scheme,which is then proved to be energy stable,uniquely solvable and second order convergent in L_2 norm by the energy method combining with the inductive method.In the second part of the work,we analyze the unique solvability and convergence of a two level nonlinear difference scheme,which was developed by Zhang et al.in 2013.Some numerical results with comparisons are provided.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701203)the National Natural Science Foundation of China(Nos.51631006,51671127 and 51825101)+3 种基金sponsored by the Youth Cheung Kong Scholars Programthe Shanghai Rising-Star Programthe support provided by the U.S.National Science Foundation(No.OIA-1757371)Use of the Advanced Photon Source was supported by the United States Department of Energy,Office of Science,Office of Basic Energy Sciences(No.DE-AC02-06CH11357)。
文摘Low ductility and strength are major bottlenecks against Mg alloys’wide applications.In this work,we systematically design the composition and fabrication process for a low-alloyed Mg-Zn-Ca alloy,showing that it can be extruded at low temperatures(~250℃)and high speeds(~2 mm/s).After the extrusion,this alloy exhibits a substantially weakened basal texture,relatively small grain size,very high tensile elongation(~30%),and good strength.The origin of the considerably improved ductility was studied using a combination of three-dimensional atom probe tomography(3D-APT),transmission electron microscopy(TEM),electron backscattered diffraction(EBSD)in conjunction with surface slip trace analysis,in-situ synchrotron X-ray diffraction,and elasto-plastic self-consistent(EPSC)modeling.Co-segregation of Zn and Ca atoms at a grain boundary is observed and associated with texture weakening and grain boundary mediated plasticity,both improving the ductility.While basal slip and prismatic slip are identified as the dominant deformation systems in the alloy,the ratio between their slip resistances is substantially reduced relative to pure Mg and most other Mg alloys,significantly contributing to the improved ductility of the alloy.This Mg-Zn-Ca alloy exhibiting excellent mechanical properties and low fabrication cost is a promising candidate for industrial productions.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 51161003), the Natural Science Foundation of Guangxi Province (Grant No. 2012GXNSFDA053001) and Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi Zhuang Autonomous Region (Grant No. GXKFJ12-01).
文摘The phase field crystal (PFC) model is used to simulate the premelting dislocation movement of the symmetric tilt grain boundary (STGB) under strain action when the system temperature is at far from the melting point and close to the melting point, respectively. The results show a local premelting occurs surrounding the dislocations as the premelting temperature is approached to from below temperature. The premelting dislocations of the STGB can glide under strain action, and the premelting region is a companion for dislocation gliding. The process of STGB decay is very similar at the two high temperature conditions. As premelting presents, it diminishes the gliding resistance for the dislocations and leads to a faster movement of dislocations, and also brings about more energy reduction of the system during the decay process of STGB. In spite of applying strain to these premelting samples in whole decay processes of STGB, the premelting dislocation region does not obviously develop and extend. This indicates that the external strain action does not promote the premelting at the high temperature, and cannot induce more premelting dislocation, which can be owed to the premelting phase around the dislocation exhibit fluid-like properties and to the premelting dislocation easily gliding and relaxing the strain energy; this is in agreement with the results of experiments and molecular dynamics.
基金financial support from National Natural Science Foundation of China(Nos.51875020,51675024 and 51811540406)National Science and Technology Major Project(No.2017-IV-0004-0041)+1 种基金Aviation Science Foundation of China(No.6141B090314)Academic Excellence Foundation of BUAA。
文摘Uniaxial ratcheting behaviour and low cycle fatigue(LCF)failure mechanism of nickel-based single crystal superalloy DD6 with[001]orientation are investigated through the stresscontrolled LCF tests with stress ratio of-1.Then the deformation behaviour during the wholelifetime from the beginning of the experiment to the fracture of the specimen,as well as the fractographic/metallographic morphology,are compared with the strain-controlled LCF experimental results.Through the scanning electron microscope(SEM)observations,it is shown that the failure characteristics under stress-controlled LCF loading are similar with those under strain-controlled loading.Nevertheless,unlike strain-controlled LCF loading,even under fully reversed cycle loading for stress-controlled LCF,DD6 shows significant ratcheting behaviour due to the tensioncompression asymmetry.In addition,the LCF lifetimes under stress control are significantly shorter than the LCF lifetimes under strain control,and the culprit might be the detrimental effect of ratcheting strain on LCF lifetime.Based on these phenomena,an improved crystal plasticity constitutive model on the basis of slip-based Walker constitutive model is developed through modifying the kinematic hardening rule in order to overcome the inaccurate prediction of decelerating stageand stable stage of ratcheting behaviour.Furthermore,combining the continuum damage mechanics,a damage-coupled crystal plasticity constitutive model is proposed to reflect the damage behaviour of DD6 and the accelerating stage of ratcheting behaviour.The simulation results for the stress-controlled LCF deformation behaviour including the whole-lifetime ratcheting behaviour show good agreement with the experimental data.
文摘Crystallization kinetics of Fe52Cr18Mo7B16C4Nb3 alloy was evaluated by X-ray diffraction(XRD),differential scanning calorimetric(DSC) tests and transmission electron microscopy(TEM) observations in this research work.In effect,crystallization and growth mechanism were investigated by using DSC tests at four different heating rates(10,20,30,40 K/min).Results showed that a two-step crystallization process occurred in the alloy in which α-Fe and Fe3B phases were crystallized,respectively in the structure after heat treatment.Activation energy for the first step of crystallization,i.e.α-Fe was measured to be 421 and 442 kJ/mol according to Kissinger-Starink and Ozawa models,respectively.Further,Avrami exponent calculated from DSC curves was 1.6 and a two-dimensional diffusion controlled growth mechanism with decreasing nucleation rate was observed in the alloy.Moreover,it was known from the TEM observations that crystalline α-Fe phase nucleated in the structure of the alloy in an average size of 10 nm and completely mottled morphology.
基金financially supported by the Natural Science Foundation of Chongqing(No.Cstc2020jcyj-msxmX0094)the Joint Research Programs between Belarusian Republican Foundation for Fundamental Research and Beijing Institute of Technology"BRFFR-BIT-2020(No.BITBLR2020004)。
文摘The complex micromechanical response among grains remains a persistent challenge to understand the deformation mechanism of titanium alloys during cold rolling.Therefore,in this work,a multiscale crystal plasticity finite element method of dual-phase alloy was proposed and secondarily developed based on LS-DYNA software.Afterward,the texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy,based on the realistic 3D microstructure,during cold rolling(20%thickness reduction)were systematically investigated.The relative activity of the■slip system in theαphase gradually increased,and then served as the main slip mode at lower Schmid factor(<0.2).In contrast,the contribution of the■slip system to the overall plastic deformation was relatively limited.For theβphase,the relative activity of the<111>{110}slip system showed an upward tendency,indicating the important role of the critical resolved shear stress relationship in the relative activity evolutions.Furthermore,the abnormally high strain of very fewβgrains was found,which was attributed to their severe rotations compelled by the neighboring pre-deformedαgrains.The calculated pole figures,rotation axes,and compelled rotation behavior exhibited good agreement to the experimental results.
基金financially supported by the National Natural Science Foundation of China(Nos.51401210 and51271186)the National High Technology Research and Development Program of China(No.2014AA041701)
文摘A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation during solidification was researched.In the present work,these analytical methods were further extended.Combined with an original vectorization method,a 3D Rosenthal solution was used to determine thermal conditions of the welds.Afterward,the dendrite growth orientation,the dendrite growth velocity and the thermal gradient along dendrite direction were calculated and lively plotted.Finally,the tendency of stray grains formation in the solidification front was forecasted and its distribution was presented with a 3D plot.The results indicate that substrate orientation has some impacts on the crystal growth pattern,dendrite growth velocity,distribution of thermal gradient and stray grain.Based on the research methods proposed in this work,any substrate crystallographic orientation can be studied,and predicted stray grains distribution can be visualized.
基金supported by the Chinese National Key Technology Research and Development Program(Grant Nos.2006BAB09B02,2006AA03Z455,and 2006BAE03B7-2)the Chinese National Science Foundation for Outstanding Young Scholars(No.20428606)+4 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(08KJB530003)the National Natural Science Foundation of China(Grant Nos.20676062,20731160614,20736002,B061101,B060105,20706029,and 20706028)NSFC-RGC(No.20731160614)the Key Science Foundation of Jiangsu Province,China(BK 2004215)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0732).
文摘In this paper,the research framework for specific structure crystallization modeling has been proposed in which four steps are required in order to investigate the rigorous crystallization modeling by thermodynamics.The first is the activity coefficient model of the solution,the second is Solid-Liquid equilibrium,the third and fourth are the dissolution and crystallization kinetics modeling,respectively.Our investigations show that the mechanisms of complex structure formation and microphase transition can be analyzed by combining the dissolution and crystallization kinetics modeling.Moreover,the formation mechanism of the porous KCl has been analyzed,which may provide a reference for the porous structure formation in the advanced material synthesis.
基金supported by the Natural Science Foundation of China(grant number 11861067).
文摘In this paper,we present a finite element algorithm for the time-dependent nematic liquid crystal flow based on the Gauge-Uzawa method.This algorithm combines the Gauge and Uzawa methods within a finite element variational formulation,which is a fully discrete projection type algorithm,whereas many projection methods have been studied without space discretization.Besides,error estimates for velocity and molecular orientation of the nematic liquid crystal flow are shown.Finally,numerical results are given to show that the presented algorithm is reliable and confirm the theoretical analysis.
文摘The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative hole size/was studied.
基金supported by the National Natural Science Foun-dation of China(Grant No.51875122).
文摘An in-depth understanding of the crystal orientation evolution during hot rolling of TiB whisker(TiBw)/TA15 composites and the anisotropy of the as-rolled plates can help fully utilize the material proper-ties.In this paper,the crystal plasticity finite element models of high-temperature(HT)β-phase and room-temperature(RT)α-phase were constructed from electron backscattering diffraction data.Based on this,the orientation evolution during hot rolling in the single-phase region and the effects of the matrix texture on the mechanical properties of the as-rolled plates were analyzed.The effect of TiBw on the anisotropy was studied by the composites finite element model.Results showed that theα-fiber texture of theβ-phase was formed during HT rolling.This texture was converted to the T-texture of theα-phase at RT during cooling according to the Burgers orientation relationships.The TiBw had little effect on the matrix texture composition.The TiBw and matrix texture caused the matrix to have higher strength along the rolling direction and the transverse direction,respectively.The matrix texture dominated the difference in mechanical properties because its effect exceeded that of TiBw.The effect of the matrix on the mechanical properties was caused by the Schmid factors(SFs)and the critical resolved shear stress(CRSS)of the slip system together.The slip mode was influenced by SFs determined by the angular rela-tionship between the crystal orientation and the loading direction.The CRSS of the activated slip system determined the yield strength.
基金financially supported by the National Natural Science Foundation of China(No.21374054)the Sino-German Center for Research Promotion
文摘We present simulations of the mechanism of secondary nucleation of polymer crystallization,based on a new model accounting for the microscopic kinetics of attaching and detaching.As the key feature of the model,we introduced multibody-interaction parameters that establish correlations between the attaching and detaching rate constants and the resulting thickness and width of the crystalline lamella.Using MATLAB and Monte Carlo method,we followed the evolution of the secondary nuclei as a function of various multibody-interaction parameters.We identified three different growth progressions of the crystal:(i) Widening,(ii) thickening and(iii) simultaneously thickening and widening of lamellar crystals,controlled by the corresponding kinetic parameters.
基金supported by the Key Research and Development Project of Hebei (grant No.22372601D)the Natural Science Foundation of Shandong (grant No.ZR202105230005)+2 种基金the National Science Foundation of China (grant Nos.22378303 and 22108195)the key project of State Key Laboratory of Chemical Engineering (grant No.SKL-ChE-2oz03)Haihe Laboratory of Sustainable Chemical Transformations.
文摘Crystal caking is a decisive factor affecting the quality of high-end fine chemicals,whereas lack of shape-to-caking understanding results in considerable waste of time,severely delaying high-end fine chemical development.On this basis,a morphology-based caking evaluation model is developed with 74%and 96%time savings compared to previous modeling and non-modeling experiments,respectively,while guaranteeing superior accuracy.The crystal morphology is expressed as a function of the aspect ratio and the particle size distribution.The quantitative relationships between these parameters and the caking tendency are deduced,firstly achieving morphology anti-caking criterion establishment.For D-allulose crystals,considering humidity,and particle size,an aspect ratio is below 3 is the standard for combating caking,which has not been reported previously.Herein,the specific effect of crystal morphology on caking behavior is quantitatively described.The knowledge obtained can be applied to rapidly and quantitatively design anti-caking storage systems for products in warehouses.
基金supported by the 45th China Postdoctoral Science Foundation (Grant No.20090451101)the Xiangtan University Postdoctoral Science Foundation
文摘The characteristic crystal model is applied to the study of phase stability and thermodynamics in substitutional bcc-based Ta-W alloys.The basic principle and method of alloy thermodynamics which is described by the characteristic crystal model is introduced in detail.The Gibbs energy of various phases including both disordered and ordered phases of the Ta-W system are evaluated.The phase diagram of Ta-W alloys is assessed and predicted.The results are in good agreement with experiments and better than that of first principle.