期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries 被引量:1
1
作者 Yuxin Gao Jiang Zhou +6 位作者 Liping Qin Zhenming Xu Zhexuan Liu Liangbing Wang Xinxin Cao Guozhao Fang Shuquan Liang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1429-1436,共8页
Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ ... Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ transformation behavior and electrochemical performance of manganese-based cathode is discussed.A comprehensive discussion manifests that the exposed(100)crystal plane is beneficial to the phase transformation from tunnel-structured MnO_(2) to layer-structured ZnMn_(3)O_(7)·3H_(2)O,which plays a critical role for the high reactivity,high capacity,fast diffusion kinetics and long cycling stability.Additionally,a two-stage zinc storage mechanism can be demonstrated,involving continuous activation reaction and phase transition reaction.As expected,it exhibits a high capacity of 275 mAh g^(-1)at 100 mA g^(-1),a superior durability over 1000 cycles and good rate capability.This study may open new windows toward developing advanced cathodes for ZIBs,and facilitate the applications of ZIBs in large-scale energy storage system. 展开更多
关键词 crystal plane Electrochemical activation Phase transition reaction Cycling stability Zinc-ion batteries
下载PDF
Deciphering the degradation discrepancy in Ni-rich cathodes with a diverse proportion of[003]crystallographic textures 被引量:1
2
作者 Lang Qiu Mengke Zhang +13 位作者 Yang Song Zhenguo Wu Yan-Fang Zhu Jun Zhang Dong Wang Hai-Yan Hu Hong-Wei Li Hang-Rui Liu Xin-Bei Jia Jian Peng Shuangqiang Chen Zuguang Yang Yao Xiao Xiaodong Guo 《Carbon Energy》 SCIE CSCD 2023年第7期15-26,共12页
The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with di... The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with different exposed ratios of[003]in structural attenuation has not been clarified.Herein,we have unraveled comprehensively the structural decay difference for Ni-rich cathodes’primary particles with the different percentages of exposed[003]by regulating the precursor coprecipitation process.The findings based on structural characterization,first-principles calculations,finite element analysis,and electrochemical test reveal that the length and width of particles represent[110]and[003]directions,respectively,and show that cathode particles with a higher[110]/[003]ratio can effectively inhibit structure degradation and intergranular/intragranular crack formation owing to the low oxygen vacancy formation energy on(003)planes and the small local stress on secondary/primary particles.This study may provide guidance for the structural design of layered cathodes. 展开更多
关键词 cracks crystal plane Ni-rich cathodes oxygen vacancy structure degradation
下载PDF
Anti-Corrosion and Reconstruction of Surface Crystal Plane for Zn Anodes by an Advanced Metal Passivation Technique 被引量:1
3
作者 Si Liu Hongxin Lin +2 位作者 Qianqian Song Jian Zhu Changbao Zhu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期166-172,共7页
For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme... For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries. 展开更多
关键词 ANTI-CORROSION aqueous zinc ion battery interfacial protective layer metal passivation technique reconstruction of surface crystal plane
下载PDF
Morphology-dependent structures and catalytic performances of Au nanostructures on Cu_2O nanocrystals synthesized by galvanic replacement reaction 被引量:2
4
作者 Zhenhua Zhang Rui Song +1 位作者 Tian Cao Weixin Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1086-1091,共6页
Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Micro... Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), High-Resolution Transmission Electron Microscope (HRTEM), X-Ray Diffraction (XRD), X-Ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS) and in-situ DRIFTS spectroscopy of CO adsorption. Different from the formation of Au-Cu alloys on Cu2O cubes by the galvanic replacement reaction (ChemNanoMat 2 (2016) 861-865), metallic Au particles and positively-charged Au clusters form on Cu2O octahedra and rhombic dodecahedra at very small Au loadings and only metallic Au particles form at large Au loadings. Metallic Au particles on Cu2O octahedra and rhombic dodecahedra are more active in catalyzing the liquid phase aerobic oxidation reaction of benzyl alcohol than positively-charged Au clusters. These results demonstrate an obvious morphology effect of Cu2O nanocrystals on the liquid-solid interfacial reactions and prove oxide morphology as an effective strategy to tune the surface reactivity and catalytic performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Au/Cu2O nanocomposites Galvanic replacement reaction Liquid-solid interfacial reaction crystal plane effect Aerobic oxidation of benzyl alcohol
下载PDF
Synthesis and characterization of ceria nanoparticles by complex-precipitation route 被引量:2
5
作者 Yanping Li Xue Bian +2 位作者 Yang Liu Wenyuan Wu Gaofeng Fu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第2期292-297,共6页
Ceria(CeO_(2))nanoparticles were successfully synthesized via a simple complex-precipitation route that employs cerium chloride as cerium source and citric acid as precipitant.The elemental analysis results of carbon,... Ceria(CeO_(2))nanoparticles were successfully synthesized via a simple complex-precipitation route that employs cerium chloride as cerium source and citric acid as precipitant.The elemental analysis results of carbon,hydrogen,oxygen,and cerium in the precursors were calculated,and the results revealed that the precursors were composed of Ce(OH)_(3),Ce(H_(2)Cit)_(3),or CeCit.X-ray diffraction analysis showed that all ceria nanoparticles had a face-centered cubic structure.With the molar ratio of citric acid to Ce^(3)+(n)of 0.25 and pH of 5.5,the specific surface area of the sample reached the maximum value of 83.17 m^(2)/g.Ceria nanoparticles were observed by scanning electron microscopy.Selected area electron diffraction patterns of several samples were obtained by transmission electron microscopy,and the crystal plane spacing of each low-exponent crystal plane was calculated.The ultraviolet(UV)–visible transmittance curve showed that ceria can absorb UV light and pass through visible light.Among all samples,the minimum average transmittance of ultraviolet radiation a(UVA)was 4.42%,and that of ultraviolet radiation b(UVB)was 1.56%. 展开更多
关键词 ceria nanoparticle complex-precipitation crystal plane spacing ultraviolet light
下载PDF
p-Type CaFe_2O_4 semiconductor nanorods controllably synthesized by molten salt method 被引量:1
6
作者 Xin Liu Junzhe Jiang +4 位作者 Yushuai Jia Ailing Jin Xiangshu Chen Fei Zhang Hongxian Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期381-386,共6页
Pure phase, regular shape and well crystallized nanorods of p-type semiconductor CaFeOhave been fabricated for the first time by a facile molten salt assisted method, as confirmed by XRD, TEM, SEM and HRTEM. UV-vis di... Pure phase, regular shape and well crystallized nanorods of p-type semiconductor CaFeOhave been fabricated for the first time by a facile molten salt assisted method, as confirmed by XRD, TEM, SEM and HRTEM. UV-vis diffuse reflectance spectra and Mott–Schottky plots show that the band structure of the CaFeOnanorods is narrower than that of the CaFeOnanoparticles synthesized by conventional method. The enhancement of the visible-light absorption is due to narrowness of the band gap in CaFeOnanorods. The appropriate ratio between the molten salt and the CaFeOprecursors plays an important role in inhibiting the growth of the crystals along the(201) plane to give the desired nanorod morphology. This work not only demonstrates that highly pure p-type CaFeOsemiconductor with tunable band structure and morphology could be obtained using the molten salt strategy, but also affirms that the bandgap of a semiconductor may be tunable by monitoring the growth of a particular crystal plane.Furthermore, the facile eutectic molten salt method developed in this work may be further extended to fabricate some other semiconductor nanomaterials with a diversity of morphologies. 展开更多
关键词 p-Type semiconductor CaFe_2O_4 nanorods Molten salt crystal plane Visible-light absorption
下载PDF
ELECTRON MICROANALYSIS FOR LASER MELTED ZONE IN 45 STEEL WITH Fe-Ni-Cr COATING
7
作者 CHENG Yongxing LI Genfu YU Shaoluo Shanghai University of Engineering Science,Shanghai,China WANG Huimin No.11 Institute of China State Shipbuilding Corp.,Shanghai,China Associate Professor,Dept.No.5,Shanghai University of Engineering Science,350 Xianxia Road,Shanghai,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第3期190-193,共4页
The Fe-Ni-Cr coating laver has been alloyed with 45 steel base metal by transverse.flow type CO_2 gas laser of maximum output 5kW.The characteristics of the melted zone and the es- sence of the“bright band”has been ... The Fe-Ni-Cr coating laver has been alloyed with 45 steel base metal by transverse.flow type CO_2 gas laser of maximum output 5kW.The characteristics of the melted zone and the es- sence of the“bright band”has been investigated using the electron microscopy.The results show that the“bright band”belongs to the melted zone and is a vertical section of the plane crystal,The width of the“bright band”equals the height of the plane crystal,which decreases with the increase of laser beam scanning rate and the decrease of laser power.This has been explained in terms of constitutional supercooling G/R. 展开更多
关键词 laser alloying rapid solidification plane crystal
下载PDF
The proximity between hydroxyl and single atom determines the catalytic reactivity of Rh1/CeO_(2) single-atom catalysts
8
作者 Danfeng Wu Shuyun Zhou +8 位作者 Congcong Du Juan Li Jianyu Huang Hong-xia Shen Abhaya K.Datye Shan Jiang Jeffrey T.Miller Sen Lin Haifeng Xiong 《Nano Research》 SCIE EI CSCD 2024年第1期397-406,共10页
The local structure of the metal single-atom site is closely related to the catalytic activity of metal single-atom catalysts(SACs).However,constructing SACs with homogeneous metal active sites is a challenge due to t... The local structure of the metal single-atom site is closely related to the catalytic activity of metal single-atom catalysts(SACs).However,constructing SACs with homogeneous metal active sites is a challenge due to the surface heterogeneity of the conventional support.Herein,we prepared two Rh1/CeO_(2)SACs(0.5Rh1/r-CeO_(2)and 0.5Rh1/c-CeO_(2),respectively)using two shaped CeO_(2)(rod and cube)exposing different facets,i.e.,CeO_(2)(111)and CeO_(2)(100).In CO oxidation reaction,the T100 of 0.5Rh1/r-CeO_(2)SACs is 120°C,while the T100 of 0.5Rh1/c-CeO_(2)SACs is as high as 200°C.Via in-situ CO diffuse reflectance infrared Fourier transform spectroscopy(CO-DRIFTS),we found that the proximity between OH group and Rh single atom on the plane surface plays an important role in the catalytic activity of Rh1/CeO_(2)SAC system in CO oxidation.The Rh single atom trapped at the CeO_(2)(111)crystal surface forms the Rh1(OH)adjacent species,which is not found on the CeO_(2)(100)crystal surface at room temperature.Furthermore,during CO oxidation,the OH group far from Rh single atom on the 0.5Rh1/c-CeO_(2)disappears and forms Rh1(OH)adjacent species when the temperature is above 150°C.The formation of Rh1(OH)adjacentCO intermediate in the reaction is pivotal for the excellent catalytic activity,which explains the difference in the catalytic activity of Rh single atoms on two different CeO_(2)planes.The formed Rh1(OH)adjacent-O-Ce structure exhibits good stability in the reducing atmosphere,maintaining the Rh atomic dispersion after CO oxidation even when pre-reduced at high temperature of 500°C.Density functional theory(DFT)calculations validate the unique activity and reaction path of the intermediate Rh1(OH)adjacentCO species formed.This work demonstrates that the proximity between metal single atom and hydroxyl can determine the formation of active intermediates to affect the catalytic performances in catalysis. 展开更多
关键词 crystal plane Rh1/CeO_(2)single-atom catalyst proximity of Rh and hydroxyl coordination structure CO oxidation
原文传递
Shape-Controlled CuCl Crystallite Catalysts for Aniline Coupling 被引量:4
9
作者 Ting Xie Ming Gong +3 位作者 Zhiqiang Niu Shuai Li Xiaoyu Yan Yadong Li 《Nano Research》 SCIE EI CSCD 2010年第3期174-179,共6页
The catalytic activity of crystallites depends mainly upon the arrangement of surface atoms,the number of dangling bonds,and defect site distribution on different crystal planes.Here,we report the shape-controlled syn... The catalytic activity of crystallites depends mainly upon the arrangement of surface atoms,the number of dangling bonds,and defect site distribution on different crystal planes.Here,we report the shape-controlled synthesis of CuCl crystallites,including tetrahedra,face-centered-etched tetrahedra,tripod dendrites,and tetrapods.These different morphologies of CuCl crystallites expose different proportions of{111}and{110}crystal planes,and materials with a preponderance of{111}crystal planes have better catalytic activity in aniline coupling than those with more{110}planes. 展开更多
关键词 CUCL aniline coupling catalytic activity crystal plane effects
原文传递
Influence of cellulose crystal plane on cellulose hydrolysis
10
作者 Li Wenzhi Lu Wenyu +2 位作者 Li Minghao Wu Hao Pan Guoqiang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第4期151-158,共8页
Cellulose polymerization degree and crystal plane changing are both considered to affect acid hydrolysis,however,it is uncertain to identify which one is more important.In this study,the filter paper was treated with ... Cellulose polymerization degree and crystal plane changing are both considered to affect acid hydrolysis,however,it is uncertain to identify which one is more important.In this study,the filter paper was treated with dilute hydrochloric acid to investigate the cellulose polymerization degree changing,and cotton linter was treated with NaOH for the purpose of changing its crystal plane.Both the treated and untreated samples were hydrolyzed under the condition of 1.0 wt%dilute hydrochloric acid with solid-liquid ratio 1:40 at 140℃for 30 min to compare the hydrolysis effects.It was found that the glucose yield increased from 9.5%to 19.7%when treated with 15%NaOH at 50℃for 30 min,and new crystal planes(1-10)(1-20)appeared after alkali treatment.According to the experimental results,it is concluded that crystal plane plays a vital role in cellulose acid hydrolysis. 展开更多
关键词 BIOMASS degree of polymerization crystal plane HYDROLYSIS
原文传递
Crystal plane engineering of MAPbI_(3) in epoxy-based materials for superior gamma-ray shielding performance
11
作者 Kai Cui Yang Li +6 位作者 Wenjing Wei Qianqian Teng Tianyu Zhang Jinzhu Wu Hongjun Kang Wei Qin Xiaohong Wu 《Light(Advanced Manufacturing)》 2022年第4期94-102,共9页
The rapid development of the aerospace and nuclear industries is accompanied by increased exposure to high-energy ionising radiation.Thus,the performance of radiation shielding materials needs to be improved to extend... The rapid development of the aerospace and nuclear industries is accompanied by increased exposure to high-energy ionising radiation.Thus,the performance of radiation shielding materials needs to be improved to extend the service life of detectors and ensure the safety of personnel.The development of novel lightweight materials with high electron density has therefore become urgent to alleviate radiation risks.In this work,new MAPbI_(3)/epoxy(CH 3NH 3PbI 3/epoxy)composites were prepared via a crystal plane engineering strategy.These composites delivered excellent radiation shielding performance against 59.5 keV gamma rays.A high linear attenuation coefficient(1.887 cm−1)and mass attenuation coefficient(1.352 cm2 g−1)were achieved for a representative MAPbI_(3)/epoxy composite,which was 10 times higher than that of the epoxy.Theoretical calculations indicate that the electron density of MAPbI_(3)/epoxy composites significantly increases when the content ratio of the(110)plane in MAPbI_(3) increases.As a result,the chances of collision between the incident gamma rays and electrons in the MAPbI_(3)/epoxy composites were enhanced.The present work provides a novel strategy for designing and developing high-efficiency radiation shielding materials. 展开更多
关键词 PEROVSKITE Gamma-ray shielding Electron density crystal plane engineering
原文传递
An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2 被引量:3
12
作者 shu-yang zhao sheng-ping wang +1 位作者 yu-jun zhao xin-bin ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第1期65-69,共5页
The mechanism of dimethyl carbonate(DMC) formation from CO2 and methanol is investigated using three well-shaped CeO2 catalysts, nanorod, nanocube and octahedron, which are packed with different crystal planes. In s... The mechanism of dimethyl carbonate(DMC) formation from CO2 and methanol is investigated using three well-shaped CeO2 catalysts, nanorod, nanocube and octahedron, which are packed with different crystal planes. In situ Fourier Transform Infrared Spectroscopy(FTIR) is employed to probe each reaction step in the DMC synthesis. The number of –OH groups and the species of CO2 adsorptions on ceria surface have significant influence on the activity of ceria with different morphologies. Rod-ceria has favorable catalytic activity because of the large amount of –OH groups and the formation of bidentate carbonate species. 展开更多
关键词 Dimethyl carbonate CEO2 -OH Bidentate carbonate crystal planes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部