In order to explore the stability of a liquid crystal(LC)system doped withγ-Fe_(2)O_(3)nanoparticles,the physical properties(clearing point,dielectric properties),electro-optical properties and residual direct-curren...In order to explore the stability of a liquid crystal(LC)system doped withγ-Fe_(2)O_(3)nanoparticles,the physical properties(clearing point,dielectric properties),electro-optical properties and residual direct-current voltage(RDCV)of the doped LC system were measured and evaluated at different times.First,the temperature was controlled by precision hot stage,and the clearing point temperature of doped LC was observed and measured by a polarized optical microscope.Using a precision LCR meter,we measured the capacitance-voltage curves of the doped LC system at the temperature of 27℃.The dielectric constant of doped LC was calculated by the dualcell capacitance method.Then,the electro-optical properties of the doped LC system were measured.Finally,the RDCV of the doped LC system was measured and calculated.After five months,the parameters of the doped LC system were re-measured and analyzed under the same conditions to evaluate its stability.The experimental results show that,within five months,the clearing point change rate of doped LC is in the range of 0.24%-1.37%,the change of dielectric anisotropy is in the range of 0.035-0.2,the curves of electro-optical properties are basically fitted,and the change rate of saturated RDCV is about 11.2%,which basically indicate that the LC system doped withγ-Fe_(2)O_(3)nanoparticles has good stability.展开更多
4 mechanical model of liquid crystals ( LCs ) was used to explain the phase formation and thermal properties . The LC plusses in the model are micro- machine systems consisting of an ensemble of molecular rotors, an...4 mechanical model of liquid crystals ( LCs ) was used to explain the phase formation and thermal properties . The LC plusses in the model are micro- machine systems consisting of an ensemble of molecular rotors, and some dynamie parameters in a semi-experiment molecular orbit method. A novel explanation on the multi-phase formation of LC system is obtained. It is found that the value of the critical rotational velueity is a key parameter for the characterization of each homologous series. The dipole moment of the molecules was also discussed.展开更多
In this paper,we study a nematic liquid crystals system in three-dimensional whole space R3 and obtain the time decay rates of the higher-order spatial derivatives of the solution by the method of spectral analysis an...In this paper,we study a nematic liquid crystals system in three-dimensional whole space R3 and obtain the time decay rates of the higher-order spatial derivatives of the solution by the method of spectral analysis and energy estimates if the initial data belongs to L1(R3) additionally.展开更多
Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized mathematical model for determining photoelastic constants in arbitrary orientation of cubic crystal system. Two times rotati...Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized mathematical model for determining photoelastic constants in arbitrary orientation of cubic crystal system. Two times rotations are utilized in the model relating to crystallographic coordinates with Cartesian coordinates. The symmetry of photoelastic constants is found to have strong dependence with rotation angle. Using the model, one can determine photoelastic constants in any orientation by selecting appropriate rotation angle. The outcome of this study helps to characterize spatial variation of residual strain in crystalline as well as polycrystalline materials having cubic structure using the experimental technique known as scanning infrared polariscope.展开更多
A method to promote aluminum hydroxide crystal growth through pickling Al(OH)_(3)as seed in the ammonia system was proposed to overcome these defects.The experimental results show that,under the conditions of pickling...A method to promote aluminum hydroxide crystal growth through pickling Al(OH)_(3)as seed in the ammonia system was proposed to overcome these defects.The experimental results show that,under the conditions of pickling time of 15 min,the acid concentration of 10%,the addition of 70 g/L pickling-Al(OH)_(3)seed,and the coarse granular Al(OH)_(3)products(d0.5=85.667)can be obtained.The characterization results show that the phase of the product is gibbsite,consistent with the seed.Moreover,the steps and ledges can be formed on pickling Al(OH)_(3)seed surface under the ammonia system,effectively promoting crystal growth.During crystal growth,the roughness of the crystal surface was first increased and then decreased,and the lamellar structure was deposited on the crystal seed surface.The final particles are approximately round,the surface is compact and dense.The growth of the product is surface reaction controlled.In addition,the content of the AlO_(6)unit is increased and contributed to Al(OH)_(3)crystal growth.展开更多
In order to theoretically study the growth morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-dio late(TKX-50)crystal in different solvent systems,crystal–solvent models were established,and then molecular dyn...In order to theoretically study the growth morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-dio late(TKX-50)crystal in different solvent systems,crystal–solvent models were established,and then molecular dynamics(MD)methods were adopted as a means to simulate particle motion.Modified attachment energy(MAE)model was employed to calculate the growth morphology of TKX-50.The simulation results demonstrate that COMPASS force field and RESP charge are suitable for molecular dynamics simulation of TKX-50.The morphologically dominant growth surfaces of TKX-50 in vacuum are(020),(011),(11–1),(100)and(120),respectively.In water(H_(2)O)and N,N-dimethylformamide(DMF)solvents,the(11–1)face is the largest in the habit face,the growth rate of(020)face becomes faster.With the increase of temperature,the aspect ratios of TKX-50 crystal in DMF solvent increase,and the areas of the(120)faces decrease.In ethylene glycol/H_(2)O mixed solvent system with volume ratio of 1/1,aspect ratio of TKX-50 is relatively small.In formic acid/H_(2)O mixed solvents with different volume ratios(1/4,1/3,1/2,1/1 and 2/1),aspect ratio of TKX-50 is relatively small when volume ratio is 1/2.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
Materials design aims to identify the material features that provide optimal properties for various engineering applications,such as aerospace,automotive,and naval.One of the important but challenging problems for mat...Materials design aims to identify the material features that provide optimal properties for various engineering applications,such as aerospace,automotive,and naval.One of the important but challenging problems for materials design is to discover multiple polycrystalline microstructures with optimal properties.This paper proposes an end-to-end artificial intelligence(AI)-driven microstructure optimization framework for elastic properties of materials.In this work,the microstructure is represented by the Orientation Distribution Function(ODF)that determines the volume densities of crystallographic orientations.The framework was evaluated on two crystal systems,cubic and hexagonal,for Titanium(Ti)in Joint Automated Repository for Various Integrated Simulations(JARVIS)database and is expected to be widely applicable for materials with multiple crystal systems.The proposed framework can discover multiple polycrystalline microstructures without compromising the optimal property values and saving significant computational time.展开更多
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Based on the results of electron probe microanalysis(EPMA)and X-ray diffraction(XRD),the isothermal sections of Zr-Ni-Ge ternary system at 973 K and 1173 K were constructed through alloy sampling approach.It is worth ...Based on the results of electron probe microanalysis(EPMA)and X-ray diffraction(XRD),the isothermal sections of Zr-Ni-Ge ternary system at 973 K and 1173 K were constructed through alloy sampling approach.It is worth noting that the crystallographic information of the formerly reportedτ2(Zr_(0.98)NiGe_(2.94))was determined,which belongs to the space group Pbcm(No.57).Besides the formerly reported ternary compounds,τ1(Zr_(6)Ni_(16)Ge_(7)),τ_(2)(Zr_(0.98)NiGe_(2.94)),τ_(3)(Zr_(3)Ni_(4)Ge_(4)),τ_(4)(ZrNiGe)andτ_(5)(Zr_(2)Ni_(0.54)Ge_(0.46)),a new ternary phase namedτ_(6)with the composition of Zr_(39)Ni_(18)Ge_(43)was primarily detected in this work.In addition,an invariant reaction Ni_(5)Ge_(3)+τ_(4)τ_(1)+τ_(3)between 973 K and 1173 K was deduced.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
A good quality(5 at.%Yb:GdScO_(3))single crystal of F30 mm37 mm was grown successfully by the Czochralski method.Its structure is studied by the x-ray diffraction(XRD),and its atomic coordinates are obtained by Rietve...A good quality(5 at.%Yb:GdScO_(3))single crystal of F30 mm37 mm was grown successfully by the Czochralski method.Its structure is studied by the x-ray diffraction(XRD),and its atomic coordinates are obtained by Rietveld refinement.The crystal field energy level splitting of Yb^(3+)in GdScO_(3) is determined by employing the absorption and photoluminescence spectra at 8 K.Only ^(2)F_(7/2)(4)is far from the ground state ^(2)F_(7/2)(1)by 710 cm-1 among the crystal field energy levels split from ^(2)F_(7/2),so it is more easier to realize the laser operation of ^(2)F5/2(1)^(2)F_(7/2)(4)with wavelength 1060 nm.The spin–orbit coupling parameters and intrinsic crystal field parameters(CFPs).The intrinsic crystal field parameters¯B k(k=2,4,6)of the crystal were fitted by the superposition model.The CFPs evaluated with¯Bk and coordination factor are taken as the initial parameters to fit the crystal field energy levels of the crystal,and the crystal field parameters Bk q are obtained finally with the root-mean-square deviation 9 cm-1.It is suggested that the ligand point charge,covalency and overlap interaction are slightly weaker than charge interpenetration and coulomb exchange interaction for Yb^(3+)in GdScO_(3).The obtained Hamiltonian parameters can be used to calculate crystal field energy levels and wave functions of Yb:GdScO_(3) to analyze the mechanism of the luminescence or laser.展开更多
Kagome magnets were predicted to be a good platform to investigate correlated topology band structure,Chern quantum phase,and geometrical frustration due to their unique lattice geometry.Here we reported single crysta...Kagome magnets were predicted to be a good platform to investigate correlated topology band structure,Chern quantum phase,and geometrical frustration due to their unique lattice geometry.Here we reported single crystal growth of 166-type kagome magnetic materials,including HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6),GdMn_(6)Sn_(6)and GdV_(6)Sn_(6),by using the flux method with Sn as the flux.Among them,HfMn_(6)Sn_(6)and ZrMn_(6)Sn_(6)single crystals were grown for the first time.X-ray diffraction measurements reveal that all four samples crystallize in HfFe6Ge6-type hexagonal structure with space group P6/mmm.All samples show metallic behavior from temperature dependence of resistivity measurements,and the dominant carrier is hole,except for GdV6Sn6 which is electron dominated.All samples have magnetic order with different transition temperatures,HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6)and GdV_(6)Sn_(6)are antiferromagnetic with TN of 541 K,466 K and 4 K respectively,while GdMn_(6)Sn_(6)is ferrimagnetic with the critical temperature of about 470 K.This study will enrich the research platform of magnetic kagome materials and help explore the novel quantum phenomena in these interesting materials.The dataset of specific crystal structure parameters for HfMn_(6)Sn_(6)are available in Science Data Bank,with the link.展开更多
In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and me...In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process.展开更多
In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ...In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ratio and heat treatment on crystallization and mechanical properties were studied.The crystallization kinetics and X-Ray Diffraction(XRD)results showed that SiO_(2)/Al_(2)O_(3) ratio and heat treatment system had a direct impact on the crystallization behavior of potassium aluminosilicate glass-ceramics.When heat-treated at 680℃/2 h and 780℃/1 h,cracks generated on the surface of the sample with the addition of SiO_(2)/Al_(2)O_(3)=4.8(in mol)due to the huge difference in the coefficient of thermal expansion between glass matrix and surface.When the addition of SiO_(2)/Al_(2)O_(3)(in mol)was 4,the sample with leucite as the main crystalline phase showed an excellent fracture toughness(1.46 MPa·m^(0.5))after the heat treatment of 680℃/2 h and 780℃/5 h.And there was a phase transformation from kaliophilite to leucite.The crystalline phases of the sample heat-treated at 680℃/8 h and 780℃/1 h were leucite and kaliophilite,which resulted in the visible light transmittance of 63%and the fracture toughness of 0.91 MPa·m^(0.5).Furthermore,after the heat treatment of 680℃/2 h and 780℃/5 h,the main crystalline phase of the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol)was still kaliophilite.Because leucite only grows on the surface of the sample and is hard to grow inward,it is hard to achieve the bulk crystallization of leucite in the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol).展开更多
The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotrop...The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena.展开更多
基金Project supported by the Natural Science Foundation of Hebei Province of China (Grant Nos. A2019202235 and A2017202004)Research and Practice Project of Hebei Provincial Higher Education and Teaching Reform (Grant No. 2017GJJG018)+2 种基金Research Projects of Undergraduate Education and Teaching Reform in Hebei University of Technology (Grant No. 201802003)the Key Subject Construction Project of Hebei Provincial Universitiesthe Special Project of China Association of Higher Education (Grant No. 21LKYB05)
文摘In order to explore the stability of a liquid crystal(LC)system doped withγ-Fe_(2)O_(3)nanoparticles,the physical properties(clearing point,dielectric properties),electro-optical properties and residual direct-current voltage(RDCV)of the doped LC system were measured and evaluated at different times.First,the temperature was controlled by precision hot stage,and the clearing point temperature of doped LC was observed and measured by a polarized optical microscope.Using a precision LCR meter,we measured the capacitance-voltage curves of the doped LC system at the temperature of 27℃.The dielectric constant of doped LC was calculated by the dualcell capacitance method.Then,the electro-optical properties of the doped LC system were measured.Finally,the RDCV of the doped LC system was measured and calculated.After five months,the parameters of the doped LC system were re-measured and analyzed under the same conditions to evaluate its stability.The experimental results show that,within five months,the clearing point change rate of doped LC is in the range of 0.24%-1.37%,the change of dielectric anisotropy is in the range of 0.035-0.2,the curves of electro-optical properties are basically fitted,and the change rate of saturated RDCV is about 11.2%,which basically indicate that the LC system doped withγ-Fe_(2)O_(3)nanoparticles has good stability.
文摘4 mechanical model of liquid crystals ( LCs ) was used to explain the phase formation and thermal properties . The LC plusses in the model are micro- machine systems consisting of an ensemble of molecular rotors, and some dynamie parameters in a semi-experiment molecular orbit method. A novel explanation on the multi-phase formation of LC system is obtained. It is found that the value of the critical rotational velueity is a key parameter for the characterization of each homologous series. The dipole moment of the molecules was also discussed.
基金supported by NNSFC(11271381and 11501373)China 973 Program(2011CB808002)+5 种基金the Natural Science Foundation of Guangdong Province(2016A0300310019 and 2016A030307042)Guangdong Provincial culture of seedling of China(2013LYM0081)the Education research platform project of Guangdong Province(2014KQNCX208)the Education Reform Project of Guangdong Province(2015558)the Shaoguan Science and Technology Foundation(20157201)Education Reform Project of Shaoguan University(SYJY20121361 and SYJY20141576)
文摘In this paper,we study a nematic liquid crystals system in three-dimensional whole space R3 and obtain the time decay rates of the higher-order spatial derivatives of the solution by the method of spectral analysis and energy estimates if the initial data belongs to L1(R3) additionally.
文摘Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized mathematical model for determining photoelastic constants in arbitrary orientation of cubic crystal system. Two times rotations are utilized in the model relating to crystallographic coordinates with Cartesian coordinates. The symmetry of photoelastic constants is found to have strong dependence with rotation angle. Using the model, one can determine photoelastic constants in any orientation by selecting appropriate rotation angle. The outcome of this study helps to characterize spatial variation of residual strain in crystalline as well as polycrystalline materials having cubic structure using the experimental technique known as scanning infrared polariscope.
基金Funded by the National Natural Science Foundation of China(No.51974188)the Liaoning Revitalization Talents Program(No.XLYC2008014)。
文摘A method to promote aluminum hydroxide crystal growth through pickling Al(OH)_(3)as seed in the ammonia system was proposed to overcome these defects.The experimental results show that,under the conditions of pickling time of 15 min,the acid concentration of 10%,the addition of 70 g/L pickling-Al(OH)_(3)seed,and the coarse granular Al(OH)_(3)products(d0.5=85.667)can be obtained.The characterization results show that the phase of the product is gibbsite,consistent with the seed.Moreover,the steps and ledges can be formed on pickling Al(OH)_(3)seed surface under the ammonia system,effectively promoting crystal growth.During crystal growth,the roughness of the crystal surface was first increased and then decreased,and the lamellar structure was deposited on the crystal seed surface.The final particles are approximately round,the surface is compact and dense.The growth of the product is surface reaction controlled.In addition,the content of the AlO_(6)unit is increased and contributed to Al(OH)_(3)crystal growth.
基金supported by Fundamental Research Program of Shanxi Province(20210302123055)and(201801D221035).
文摘In order to theoretically study the growth morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-dio late(TKX-50)crystal in different solvent systems,crystal–solvent models were established,and then molecular dynamics(MD)methods were adopted as a means to simulate particle motion.Modified attachment energy(MAE)model was employed to calculate the growth morphology of TKX-50.The simulation results demonstrate that COMPASS force field and RESP charge are suitable for molecular dynamics simulation of TKX-50.The morphologically dominant growth surfaces of TKX-50 in vacuum are(020),(011),(11–1),(100)and(120),respectively.In water(H_(2)O)and N,N-dimethylformamide(DMF)solvents,the(11–1)face is the largest in the habit face,the growth rate of(020)face becomes faster.With the increase of temperature,the aspect ratios of TKX-50 crystal in DMF solvent increase,and the areas of the(120)faces decrease.In ethylene glycol/H_(2)O mixed solvent system with volume ratio of 1/1,aspect ratio of TKX-50 is relatively small.In formic acid/H_(2)O mixed solvents with different volume ratios(1/4,1/3,1/2,1/1 and 2/1),aspect ratio of TKX-50 is relatively small when volume ratio is 1/2.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金This work was supported primarily by National Science Foundation(NSF)CMMI awards 2053929/2053840Partial support from NIST award 70NANB19H005 and DOE awards DE-SC0019358,DE-SC0021399 is also acknowledged.
文摘Materials design aims to identify the material features that provide optimal properties for various engineering applications,such as aerospace,automotive,and naval.One of the important but challenging problems for materials design is to discover multiple polycrystalline microstructures with optimal properties.This paper proposes an end-to-end artificial intelligence(AI)-driven microstructure optimization framework for elastic properties of materials.In this work,the microstructure is represented by the Orientation Distribution Function(ODF)that determines the volume densities of crystallographic orientations.The framework was evaluated on two crystal systems,cubic and hexagonal,for Titanium(Ti)in Joint Automated Repository for Various Integrated Simulations(JARVIS)database and is expected to be widely applicable for materials with multiple crystal systems.The proposed framework can discover multiple polycrystalline microstructures without compromising the optimal property values and saving significant computational time.
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金Sponsored by the Major State Basic Research Development Program of China(Grant No.2014CB6644002).
文摘Based on the results of electron probe microanalysis(EPMA)and X-ray diffraction(XRD),the isothermal sections of Zr-Ni-Ge ternary system at 973 K and 1173 K were constructed through alloy sampling approach.It is worth noting that the crystallographic information of the formerly reportedτ2(Zr_(0.98)NiGe_(2.94))was determined,which belongs to the space group Pbcm(No.57).Besides the formerly reported ternary compounds,τ1(Zr_(6)Ni_(16)Ge_(7)),τ_(2)(Zr_(0.98)NiGe_(2.94)),τ_(3)(Zr_(3)Ni_(4)Ge_(4)),τ_(4)(ZrNiGe)andτ_(5)(Zr_(2)Ni_(0.54)Ge_(0.46)),a new ternary phase namedτ_(6)with the composition of Zr_(39)Ni_(18)Ge_(43)was primarily detected in this work.In addition,an invariant reaction Ni_(5)Ge_(3)+τ_(4)τ_(1)+τ_(3)between 973 K and 1173 K was deduced.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFB3605700 and 2023YFB3507403)the National Natural Science Foundation of China(Grant No.52272011)+2 种基金the Youth Innovation Promotion Association of CAS(Grant No.2023463)Plan for Anhui Major Provincial Science&Technology Project(Grant No.202203a05020002)Open Project of Advanced Laser Technology Laboratory of Anhui Province(Grant No.AHL20220ZR04).
文摘A good quality(5 at.%Yb:GdScO_(3))single crystal of F30 mm37 mm was grown successfully by the Czochralski method.Its structure is studied by the x-ray diffraction(XRD),and its atomic coordinates are obtained by Rietveld refinement.The crystal field energy level splitting of Yb^(3+)in GdScO_(3) is determined by employing the absorption and photoluminescence spectra at 8 K.Only ^(2)F_(7/2)(4)is far from the ground state ^(2)F_(7/2)(1)by 710 cm-1 among the crystal field energy levels split from ^(2)F_(7/2),so it is more easier to realize the laser operation of ^(2)F5/2(1)^(2)F_(7/2)(4)with wavelength 1060 nm.The spin–orbit coupling parameters and intrinsic crystal field parameters(CFPs).The intrinsic crystal field parameters¯B k(k=2,4,6)of the crystal were fitted by the superposition model.The CFPs evaluated with¯Bk and coordination factor are taken as the initial parameters to fit the crystal field energy levels of the crystal,and the crystal field parameters Bk q are obtained finally with the root-mean-square deviation 9 cm-1.It is suggested that the ligand point charge,covalency and overlap interaction are slightly weaker than charge interpenetration and coulomb exchange interaction for Yb^(3+)in GdScO_(3).The obtained Hamiltonian parameters can be used to calculate crystal field energy levels and wave functions of Yb:GdScO_(3) to analyze the mechanism of the luminescence or laser.
基金the Beijing Natural Science Founda-tion(Grant No.Z210006)the National Key Research and De-velopment Program of China(Grant Nos.2022YFA1403400 and 2020YFA0308800)the Beijing National Labora-tory for Condensed Matter Physics(Grant No.2023BNL-CMPKF007).
文摘Kagome magnets were predicted to be a good platform to investigate correlated topology band structure,Chern quantum phase,and geometrical frustration due to their unique lattice geometry.Here we reported single crystal growth of 166-type kagome magnetic materials,including HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6),GdMn_(6)Sn_(6)and GdV_(6)Sn_(6),by using the flux method with Sn as the flux.Among them,HfMn_(6)Sn_(6)and ZrMn_(6)Sn_(6)single crystals were grown for the first time.X-ray diffraction measurements reveal that all four samples crystallize in HfFe6Ge6-type hexagonal structure with space group P6/mmm.All samples show metallic behavior from temperature dependence of resistivity measurements,and the dominant carrier is hole,except for GdV6Sn6 which is electron dominated.All samples have magnetic order with different transition temperatures,HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6)and GdV_(6)Sn_(6)are antiferromagnetic with TN of 541 K,466 K and 4 K respectively,while GdMn_(6)Sn_(6)is ferrimagnetic with the critical temperature of about 470 K.This study will enrich the research platform of magnetic kagome materials and help explore the novel quantum phenomena in these interesting materials.The dataset of specific crystal structure parameters for HfMn_(6)Sn_(6)are available in Science Data Bank,with the link.
基金supported by Priority Academic Program Development of Jiangsu Higher Educatior(PPZY2015A044).
文摘In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process.
基金Funded by State Key Laboratory of Silicate Materials for Ar-chitectures(Wuhan University of Technology)(No.2011DA105356)。
文摘In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ratio and heat treatment on crystallization and mechanical properties were studied.The crystallization kinetics and X-Ray Diffraction(XRD)results showed that SiO_(2)/Al_(2)O_(3) ratio and heat treatment system had a direct impact on the crystallization behavior of potassium aluminosilicate glass-ceramics.When heat-treated at 680℃/2 h and 780℃/1 h,cracks generated on the surface of the sample with the addition of SiO_(2)/Al_(2)O_(3)=4.8(in mol)due to the huge difference in the coefficient of thermal expansion between glass matrix and surface.When the addition of SiO_(2)/Al_(2)O_(3)(in mol)was 4,the sample with leucite as the main crystalline phase showed an excellent fracture toughness(1.46 MPa·m^(0.5))after the heat treatment of 680℃/2 h and 780℃/5 h.And there was a phase transformation from kaliophilite to leucite.The crystalline phases of the sample heat-treated at 680℃/8 h and 780℃/1 h were leucite and kaliophilite,which resulted in the visible light transmittance of 63%and the fracture toughness of 0.91 MPa·m^(0.5).Furthermore,after the heat treatment of 680℃/2 h and 780℃/5 h,the main crystalline phase of the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol)was still kaliophilite.Because leucite only grows on the surface of the sample and is hard to grow inward,it is hard to achieve the bulk crystallization of leucite in the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol).
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1405000)the National Natural Science Foundation of China (Grant No.62375141)+1 种基金the Natural Science Foundation of Jiangsu Province,Major Project (Grant No.BK20212004)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos.NY222122 and NY222105)。
文摘The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena.