The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines ...The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper(Cu)current collectors.Specifically,this approach enhances the prevalence of Cu(100)facets within the grooves,effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition.Unlike approaches that modify the entire surface of collectors,our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics.The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42%over 350 cycles at 1 mA cm^(−2).The symmetric cell can cycle stably for 1600 h at 0.5 mA cm^(−2).Furthermore,when integrated with LiFePO4 cathodes,the full-cell configuration demonstrates outstanding capacity retention of 92.39%after 400 cycles at a 1C discharge rate.This study introduces a novel technique for fabricating selective lithiophilic three-dimensional(3D)Cu current collectors,thereby enhancing the performance of Li metal batteries.The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.展开更多
Inorganic Cs_(2)SnI_(6) perovskite has exhibited substantial potential for light harvesting due to its exceptional optoelectronic properties and remarkable stability in ambient conditions.The charge transport characte...Inorganic Cs_(2)SnI_(6) perovskite has exhibited substantial potential for light harvesting due to its exceptional optoelectronic properties and remarkable stability in ambient conditions.The charge transport characteristics within perovskite films are subject to modulation by various factors,including crystalline orientation,morphology,and crystalline quality.Achieving preferred crystalline orientation and film morphology via a solution-based process is challenging for Cs_(2)SnI_(6) films.In this work,we employed thiourea as an additive to optimize crystal orientation,enhance film morphology,promote crystallization,and achieve phase purity.Thiourea lowers the surface energy of the(222)plane along the(111)direction,confirmed by x-ray diffraction,x-ray photoelectron spectroscopy,ultraviolet photoelectron spectroscopy studies,and density functional theory calculations.Varying thiourea concentration enables a bandgap tuning of Cs_(2)SnI_(6) from 1.52 eV to1.07 eV.This approach provides a novel method for utilizing Cs_(2)SnI_(6) films in high-performance optoelectronic devices.展开更多
This paper reports that the Zn0.95Co0.05O polycrystalline powder and thin film were prepared by sol-gel technique under the similar preparation conditions. The former does not show typical ferromagnetic behaviour, whi...This paper reports that the Zn0.95Co0.05O polycrystalline powder and thin film were prepared by sol-gel technique under the similar preparation conditions. The former does not show typical ferromagnetic behaviour, while the latter exhibits obvious ferromagnetic properties at 5 K and room temperature. The UV-vis spectra and x-ray absorption spectra show that Co2+ ions are homogeneously incorporated into ZnO lattice without forming secondary phases.The distinct difference between film and powder sample is the c-axis (002) preferential orientation indicated by the x-ray diffraction pattern and field emission scanning electron microscopy measurement, which may be the reason why Zn0.95Co0.05O film shows ferromagnetic behaviour.展开更多
Mo/Si multilayers were fabricated by using magnetron sputtering method at different background pressures:6×10-5 Torr,3×10-5 Torr,and 3×10-6 Torr.The reflectivity of the Mo/Si multilayers increased from ...Mo/Si multilayers were fabricated by using magnetron sputtering method at different background pressures:6×10-5 Torr,3×10-5 Torr,and 3×10-6 Torr.The reflectivity of the Mo/Si multilayers increased from 1.93% to 16.63%,and the center wavelength revealed a blue shift to 0.12 nm with the decrease of background pressure.Grazing incident X-ray diffraction(GIXRD) indicated that multilayers fabricated at high background pressure possessed better periodic structure and thinner Mo-on-Si interlayers.Low crystallization degree in(110) preferred the orientation of Mo layers and serious interdiffusion in the Mo/Si multilayers fabricated at low background pressure were observed by transmission electron microscopy(TEM).According to quantitative analysis of microstructural parameters,the Mo layers thickness and thickness ratio of Mo/Si multilayers both decreased and approached the design value gradually by the decrease of background pressure.In addition,the thicknesses of Mo-on-Si and Si-on-Mo interlayers were 1.17 nm and 0.85 nm respectively.It is suggested that the influence of background pressures on the microstructure has a critical role in determining the optical properties of Mo/Si multilayers.展开更多
In this work, the effects of annealing conditions on the microstructure of polypropylene(PP) precursor films and further on the porous structure and permeability of stretched membranes were investigated. Combination...In this work, the effects of annealing conditions on the microstructure of polypropylene(PP) precursor films and further on the porous structure and permeability of stretched membranes were investigated. Combinations of WAXD, FTIR, DSC and DMA results clearly showed the crystalline orientation and crystallinity of the precursor film increased with annealing temperature, while the molecular chain entanglements in the amorphous phase decreased. Changes in the deformation behavior suggested more lamellar separation occurred for the films annealed at higher temperatures. Surface morphologies of the membranes examined by SEM revealed more pore number and uniform porous structure as the annealing temperature increased. In accordance with the SEM results, the permeability of the membranes increased with annealing temperature. On the other hand, it was found that 10 min was almost enough for the annealing process to obtain the microporous membranes with an optimal permeability.展开更多
The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics(MD) simulations.The results indicated that the def...The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics(MD) simulations.The results indicated that the deformation process of iridium single crystals with [100]and [110] orientations was presented as the stacking faults expansion and the formation of Lomer-Cottrell locks.And the occurrence of Lomer-Cottrell locks was considered as the interaction of stacking faults on {111} planes by MD simulations.The evolution of crystal structure in compression indicated that the Lomer-Cottrell locks might contribute to the large plastic deformation of iridium single crystals.Moreover,the deformation features in MD simulations showed that the elastic modulus(E) and yield stress(σ_(s)) of iridium single crystals were significantly influenced by the temperature.The elastic modulus and yield stress gradually decreased with an increased temperature for all orientations.Meanwhile,the single crystal with a closely spaced lattice structure exhibited superior mechanical properties at a same temperature.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52375438)Shenzhen Science and Technology Programs(Grant No.JCYJ20220818100408019,JSGG20220831101401003,JSGG20210802154007021,KQTD201708101102503570).
文摘The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper(Cu)current collectors.Specifically,this approach enhances the prevalence of Cu(100)facets within the grooves,effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition.Unlike approaches that modify the entire surface of collectors,our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics.The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42%over 350 cycles at 1 mA cm^(−2).The symmetric cell can cycle stably for 1600 h at 0.5 mA cm^(−2).Furthermore,when integrated with LiFePO4 cathodes,the full-cell configuration demonstrates outstanding capacity retention of 92.39%after 400 cycles at a 1C discharge rate.This study introduces a novel technique for fabricating selective lithiophilic three-dimensional(3D)Cu current collectors,thereby enhancing the performance of Li metal batteries.The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174275,62174113,61874139,61904201,and 11875088)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019B1515120057)。
文摘Inorganic Cs_(2)SnI_(6) perovskite has exhibited substantial potential for light harvesting due to its exceptional optoelectronic properties and remarkable stability in ambient conditions.The charge transport characteristics within perovskite films are subject to modulation by various factors,including crystalline orientation,morphology,and crystalline quality.Achieving preferred crystalline orientation and film morphology via a solution-based process is challenging for Cs_(2)SnI_(6) films.In this work,we employed thiourea as an additive to optimize crystal orientation,enhance film morphology,promote crystallization,and achieve phase purity.Thiourea lowers the surface energy of the(222)plane along the(111)direction,confirmed by x-ray diffraction,x-ray photoelectron spectroscopy,ultraviolet photoelectron spectroscopy studies,and density functional theory calculations.Varying thiourea concentration enables a bandgap tuning of Cs_(2)SnI_(6) from 1.52 eV to1.07 eV.This approach provides a novel method for utilizing Cs_(2)SnI_(6) films in high-performance optoelectronic devices.
文摘This paper reports that the Zn0.95Co0.05O polycrystalline powder and thin film were prepared by sol-gel technique under the similar preparation conditions. The former does not show typical ferromagnetic behaviour, while the latter exhibits obvious ferromagnetic properties at 5 K and room temperature. The UV-vis spectra and x-ray absorption spectra show that Co2+ ions are homogeneously incorporated into ZnO lattice without forming secondary phases.The distinct difference between film and powder sample is the c-axis (002) preferential orientation indicated by the x-ray diffraction pattern and field emission scanning electron microscopy measurement, which may be the reason why Zn0.95Co0.05O film shows ferromagnetic behaviour.
基金supported by the National Natural Science Foundation of China (Grant Nos.12192210 and 12192214)the independent project of State Key Laboratory of Traction Power (Grant No.2022TPL-T05).
基金supported by the National Natural Sciences Foundation of China (Grant No.50671042)the Open Project of State Key Laboratory of Applied Optics (Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences) (Grant No.201004)the Ph.D.Innovation Programs Foundation of Jiangsu Province (Grant No.CXZZ12_0671)
文摘Mo/Si multilayers were fabricated by using magnetron sputtering method at different background pressures:6×10-5 Torr,3×10-5 Torr,and 3×10-6 Torr.The reflectivity of the Mo/Si multilayers increased from 1.93% to 16.63%,and the center wavelength revealed a blue shift to 0.12 nm with the decrease of background pressure.Grazing incident X-ray diffraction(GIXRD) indicated that multilayers fabricated at high background pressure possessed better periodic structure and thinner Mo-on-Si interlayers.Low crystallization degree in(110) preferred the orientation of Mo layers and serious interdiffusion in the Mo/Si multilayers fabricated at low background pressure were observed by transmission electron microscopy(TEM).According to quantitative analysis of microstructural parameters,the Mo layers thickness and thickness ratio of Mo/Si multilayers both decreased and approached the design value gradually by the decrease of background pressure.In addition,the thicknesses of Mo-on-Si and Si-on-Mo interlayers were 1.17 nm and 0.85 nm respectively.It is suggested that the influence of background pressures on the microstructure has a critical role in determining the optical properties of Mo/Si multilayers.
基金financially supported by the National Natural Science Foundation of China(No.51273132)Chinese Scholarship Council(CSC)
文摘In this work, the effects of annealing conditions on the microstructure of polypropylene(PP) precursor films and further on the porous structure and permeability of stretched membranes were investigated. Combinations of WAXD, FTIR, DSC and DMA results clearly showed the crystalline orientation and crystallinity of the precursor film increased with annealing temperature, while the molecular chain entanglements in the amorphous phase decreased. Changes in the deformation behavior suggested more lamellar separation occurred for the films annealed at higher temperatures. Surface morphologies of the membranes examined by SEM revealed more pore number and uniform porous structure as the annealing temperature increased. In accordance with the SEM results, the permeability of the membranes increased with annealing temperature. On the other hand, it was found that 10 min was almost enough for the annealing process to obtain the microporous membranes with an optimal permeability.
基金financially supported by the National Key R&D Program of China (No. 2017YFB0305503)the Joint Funds of the National Natural Science Foundation of China (No. U1202273)the National Natural Science Foundation of China (No. 51501075)。
文摘The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics(MD) simulations.The results indicated that the deformation process of iridium single crystals with [100]and [110] orientations was presented as the stacking faults expansion and the formation of Lomer-Cottrell locks.And the occurrence of Lomer-Cottrell locks was considered as the interaction of stacking faults on {111} planes by MD simulations.The evolution of crystal structure in compression indicated that the Lomer-Cottrell locks might contribute to the large plastic deformation of iridium single crystals.Moreover,the deformation features in MD simulations showed that the elastic modulus(E) and yield stress(σ_(s)) of iridium single crystals were significantly influenced by the temperature.The elastic modulus and yield stress gradually decreased with an increased temperature for all orientations.Meanwhile,the single crystal with a closely spaced lattice structure exhibited superior mechanical properties at a same temperature.