By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI o...By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line, R<SUB>2</SUB> line, and U band of GSGG:Cr<SUP>3+</SUP> at 300 K have been calculated, respectively. The calculated results are in good agreement with all the experimental data. Their physical origins have also been explained. It is found that the mixing-degree of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 300 K is remarkable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role not only for the 'pure electronic' PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line but also the PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line due to EPI. The pressure-dependent behaviors of the 'pure electronic' PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) and the PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line). In the range of about 15 kbar ~ 45 kbar, the mergence and/or order-reversal between levels and levels take place, which cause the fluctuation of the rate of PS for with pressure. At 300 K, both the temperature-dependent contribution to R<SUB>1</SUB> line (or R<SUB>2</SUB> line or U band) from EPI and the temperature-independent one are important.展开更多
By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI o...By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> at 70 K have been calculated, respectively. Their physical origins have been revealed. It is found that the admixture of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 70 K is remarkable under the normal pressure, and the degree of the admixture rapidly decreases with increasing pressure. The change of the degree of the admixture with the pressure plays a key role for not only the pure electronic PS of R<SUB>1</SUB> line but also the PS of R<SUB>1</SUB> line due to EPI. The detailed calculations and analyses show that the pressure-dependent behaviors of the pure electronic PS of R<SUB>1</SUB> line and the PS of R<SUB>1</SUB> line due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line, which has satisfactorily explained the experimental data (including a reversal of PS of R<SUB>1</SUB> line). In contributions to PS of R<SUB>1</SUB> line due to EPI at 70 K, the temperature-independent contribution is much larger than the temperature-dependent contribution. The former results from the interaction between the zero-point vibration of the lattice and localized electronic state.展开更多
CDEX(China Dark matter EXperiment)合作组将在中国锦屏极深地下实验室(CJPL China Jin-Ping deep underground Laboratory)利用极低能阈高纯锗(ULE-HPGe)探测器进行暗物质的直接探测。在地下实验之前,对CsI(Tl)晶体反符合探测器进行...CDEX(China Dark matter EXperiment)合作组将在中国锦屏极深地下实验室(CJPL China Jin-Ping deep underground Laboratory)利用极低能阈高纯锗(ULE-HPGe)探测器进行暗物质的直接探测。在地下实验之前,对CsI(Tl)晶体反符合探测器进行了地面的实验研究。主要包括光导的选择,光反射层的选择,CsI(Tl)晶体的高度一致性测试,不同侧面非均匀性的测试,以及所有晶体的测试结果。通过地面实验的前期工作,我们对反符合探测器有了一定认识,为地下实验做了准备。展开更多
A theory for shifts of energy spectra due to electron-phonon interaction (EPI) has been developed. Both the temperature-independent contributions and the temperature-dependent ones of acoustic branches and optical bra...A theory for shifts of energy spectra due to electron-phonon interaction (EPI) has been developed. Both the temperature-independent contributions and the temperature-dependent ones of acoustic branches and optical branches have been derived. It is found that the temperature-independent contributions are very important, especially at low temperature. The total pressure-induced shift (PS) of a level (or spectral line or band) is the algebraic sum of its PS without EPI and its PS due to EPI. By means of both the theory for shifts of energy spectra due to EPI and the theory for PS of energy spectra, the total PS of R<SUB>1</SUB> line of tunable laser crystal GSGG:Cr<SUP>3+</SUP> at 70 K as well as the ones of its R<SUB>1</SUB> line, R<SUB>2</SUB> line and U band at 300 K will be successfully calculated and explained in this series of papers.展开更多
The electrical conductivity and Hall effect for T1GaSeS crystals have been investigated over a wide temperature range. The crystals we used are grown by a modified Bridgman technique and possess p-type conductivity. T...The electrical conductivity and Hall effect for T1GaSeS crystals have been investigated over a wide temperature range. The crystals we used are grown by a modified Bridgman technique and possess p-type conductivity. The energy gap has been found to be 1.63 eV, whereas the ionization energy is 0.25 eV. The variations of the Hall mobility as well as the carrier concentration with temperature have been investigated. The scattering mechanisms of the carder are checked over the whole investigated temperature range. Furthermore, the diffusion coefficient, relaxation time, and diffusion length of holes are estimated.展开更多
By means of improved ligand-field theory, the "pure electronic" pressure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of R1 line and R2 line of YAG:Cr^3+ have been calculated, ...By means of improved ligand-field theory, the "pure electronic" pressure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of R1 line and R2 line of YAG:Cr^3+ have been calculated, respectively. The calculated results are in very good agreement with the experimental data. It is demonstrated that the admixture of │t^2 2(^3T1)e^4T2〉 and │t^3 2 ^2E〉 bases in the wavefunction of RI level of YAG:Crs+ and its change with pressure play a key role for the PS of RI line. The behaviors of the "pure electronic" PS of RI line and the PS of RI line due to EPI are different. It is the combined eEect of them that gives rise to the total PS of R1 line, which has satisfactorily explained the experimental results. The systematic analyses and comparisons between the feature of R1-line PS of YAG:Cr^3+ and the ones of three laser crystals (GSGG:Cr^3+, GGG:Cr^3+ and ruby) have been made, and the origin of the difference between them has been revealed.展开更多
With the strong-field scheme and trigonal bases, the complete d<SUP>3</SUP> energy matrix in a trigonally distorted cubic-field has been constructed. By diagonalizing this matrix, the normal-pressure energ...With the strong-field scheme and trigonal bases, the complete d<SUP>3</SUP> energy matrix in a trigonally distorted cubic-field has been constructed. By diagonalizing this matrix, the normal-pressure energy spectra and wavefunctions of GSGG:Cr<SUP>3+</SUP> at 70 K and 300 K have been calculated without the electron-phonon interaction (EPI), respectively. Further, the contributions to energy spectra from EPI at two temperatures have also been calculated, where temperature-independent terms of EPI are found to be dominant. The sum of aforementioned two parts gives rise to the total energy spectrum. The calculated results are in good agreement with all the optical-spectral experimental data and the experimental results of and . It is found that the contribution from EPI to R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> with taking into account spin-orbit interaction (H<SUB>so</SUB>) and trigonal field (V<SUB>trig</SUB>) is much larger than the one with neglecting H<SUB>so</SUB> and V<SUB>trig</SUB>, and accordingly it is essential for the calculation of the EPI effect to take first into account H<SUB>so</SUB> and V<SUB>trig</SUB>. The admixture of base-wavefunctions,and , the average energy separation and their variations with temperature have been calculated and discussed.展开更多
In order to push the grating-based phase contrast imaging system to be used in hospitM and laboratories, this paper designs and develops a novel structure of x-ray scintillator functioning also as an analyser grating,...In order to push the grating-based phase contrast imaging system to be used in hospitM and laboratories, this paper designs and develops a novel structure of x-ray scintillator functioning also as an analyser grating, which has been proposed for grating-based x-ray differential phase contrast imaging. According to this design, the scintillator should have a periodical structure in one dimension with the pitch equaling the period of self-image of the phase grating at the Talbot distance, where one half of the pitch is pixellated and is made of x-ray sensitive fluorescent material, such as CsI(T1), and the remaining part of the pitch is made of x-ray insensitive material, such as silicon. To realize the design, a deep pore array with a high aspect ratio and specially designed grating pattern are successfully manufactured on 5 inch silicon wafer by the photo-assisted electrochemical etching method. The related other problems, such as oxidation-caused geometrical distortion, the filling of CsI(T1) into deep pores and the removal of inside bubbles, have been overcome. Its pixel size, depth and grating pitch are 3 p.m^7.5 ~m, 150 p^m and 3 Ixm, respectively. The microstructure of the scintillator has been examined microscopically and macroscopically by scanning electron microscope and x-ray resolution chart testing, respectively. The preliminary measurements have shown that the proposed scintillator, also functioning as an analyser grating, has been successfully designed and developed.展开更多
The inorganic CsI(Tl) crystal scintillator is a candidate anti-compton detector for the China Dark matter Experiment. Studying the intrinsic radiopurity of the CsI(Tl) crystal is an issue of major importance. The ...The inorganic CsI(Tl) crystal scintillator is a candidate anti-compton detector for the China Dark matter Experiment. Studying the intrinsic radiopurity of the CsI(Tl) crystal is an issue of major importance. The timing, energy and spatial correlations, as well as the capability of pulse shape discrimination provide powerful methods for the measurement of intrinsic radiopurities. The experimental design, detector performance and event-selection algorithms are described. A total of 359×3 kg-days data from three prototypes of CsI(Tl) crystals were taken at China Jinping Underground Laboratory (CJPL), which offers a good shielding environment. The contamination levels of internal isotopes from 137Cs, 232Th and 238U series, as well as the upper bounds of 235U series are reported. Identification of the whole α peaks from U/Th decay chains and derivation of those corresponding quenching factors are achieved.展开更多
文摘By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line, R<SUB>2</SUB> line, and U band of GSGG:Cr<SUP>3+</SUP> at 300 K have been calculated, respectively. The calculated results are in good agreement with all the experimental data. Their physical origins have also been explained. It is found that the mixing-degree of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 300 K is remarkable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role not only for the 'pure electronic' PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line but also the PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line due to EPI. The pressure-dependent behaviors of the 'pure electronic' PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) and the PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line). In the range of about 15 kbar ~ 45 kbar, the mergence and/or order-reversal between levels and levels take place, which cause the fluctuation of the rate of PS for with pressure. At 300 K, both the temperature-dependent contribution to R<SUB>1</SUB> line (or R<SUB>2</SUB> line or U band) from EPI and the temperature-independent one are important.
文摘By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> at 70 K have been calculated, respectively. Their physical origins have been revealed. It is found that the admixture of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 70 K is remarkable under the normal pressure, and the degree of the admixture rapidly decreases with increasing pressure. The change of the degree of the admixture with the pressure plays a key role for not only the pure electronic PS of R<SUB>1</SUB> line but also the PS of R<SUB>1</SUB> line due to EPI. The detailed calculations and analyses show that the pressure-dependent behaviors of the pure electronic PS of R<SUB>1</SUB> line and the PS of R<SUB>1</SUB> line due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line, which has satisfactorily explained the experimental data (including a reversal of PS of R<SUB>1</SUB> line). In contributions to PS of R<SUB>1</SUB> line due to EPI at 70 K, the temperature-independent contribution is much larger than the temperature-dependent contribution. The former results from the interaction between the zero-point vibration of the lattice and localized electronic state.
文摘CDEX(China Dark matter EXperiment)合作组将在中国锦屏极深地下实验室(CJPL China Jin-Ping deep underground Laboratory)利用极低能阈高纯锗(ULE-HPGe)探测器进行暗物质的直接探测。在地下实验之前,对CsI(Tl)晶体反符合探测器进行了地面的实验研究。主要包括光导的选择,光反射层的选择,CsI(Tl)晶体的高度一致性测试,不同侧面非均匀性的测试,以及所有晶体的测试结果。通过地面实验的前期工作,我们对反符合探测器有了一定认识,为地下实验做了准备。
文摘A theory for shifts of energy spectra due to electron-phonon interaction (EPI) has been developed. Both the temperature-independent contributions and the temperature-dependent ones of acoustic branches and optical branches have been derived. It is found that the temperature-independent contributions are very important, especially at low temperature. The total pressure-induced shift (PS) of a level (or spectral line or band) is the algebraic sum of its PS without EPI and its PS due to EPI. By means of both the theory for shifts of energy spectra due to EPI and the theory for PS of energy spectra, the total PS of R<SUB>1</SUB> line of tunable laser crystal GSGG:Cr<SUP>3+</SUP> at 70 K as well as the ones of its R<SUB>1</SUB> line, R<SUB>2</SUB> line and U band at 300 K will be successfully calculated and explained in this series of papers.
文摘The electrical conductivity and Hall effect for T1GaSeS crystals have been investigated over a wide temperature range. The crystals we used are grown by a modified Bridgman technique and possess p-type conductivity. The energy gap has been found to be 1.63 eV, whereas the ionization energy is 0.25 eV. The variations of the Hall mobility as well as the carrier concentration with temperature have been investigated. The scattering mechanisms of the carder are checked over the whole investigated temperature range. Furthermore, the diffusion coefficient, relaxation time, and diffusion length of holes are estimated.
文摘By means of improved ligand-field theory, the "pure electronic" pressure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of R1 line and R2 line of YAG:Cr^3+ have been calculated, respectively. The calculated results are in very good agreement with the experimental data. It is demonstrated that the admixture of │t^2 2(^3T1)e^4T2〉 and │t^3 2 ^2E〉 bases in the wavefunction of RI level of YAG:Crs+ and its change with pressure play a key role for the PS of RI line. The behaviors of the "pure electronic" PS of RI line and the PS of RI line due to EPI are different. It is the combined eEect of them that gives rise to the total PS of R1 line, which has satisfactorily explained the experimental results. The systematic analyses and comparisons between the feature of R1-line PS of YAG:Cr^3+ and the ones of three laser crystals (GSGG:Cr^3+, GGG:Cr^3+ and ruby) have been made, and the origin of the difference between them has been revealed.
文摘With the strong-field scheme and trigonal bases, the complete d<SUP>3</SUP> energy matrix in a trigonally distorted cubic-field has been constructed. By diagonalizing this matrix, the normal-pressure energy spectra and wavefunctions of GSGG:Cr<SUP>3+</SUP> at 70 K and 300 K have been calculated without the electron-phonon interaction (EPI), respectively. Further, the contributions to energy spectra from EPI at two temperatures have also been calculated, where temperature-independent terms of EPI are found to be dominant. The sum of aforementioned two parts gives rise to the total energy spectrum. The calculated results are in good agreement with all the optical-spectral experimental data and the experimental results of and . It is found that the contribution from EPI to R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> with taking into account spin-orbit interaction (H<SUB>so</SUB>) and trigonal field (V<SUB>trig</SUB>) is much larger than the one with neglecting H<SUB>so</SUB> and V<SUB>trig</SUB>, and accordingly it is essential for the calculation of the EPI effect to take first into account H<SUB>so</SUB> and V<SUB>trig</SUB>. The admixture of base-wavefunctions,and , the average energy separation and their variations with temperature have been calculated and discussed.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant No. 60532090)
文摘In order to push the grating-based phase contrast imaging system to be used in hospitM and laboratories, this paper designs and develops a novel structure of x-ray scintillator functioning also as an analyser grating, which has been proposed for grating-based x-ray differential phase contrast imaging. According to this design, the scintillator should have a periodical structure in one dimension with the pitch equaling the period of self-image of the phase grating at the Talbot distance, where one half of the pitch is pixellated and is made of x-ray sensitive fluorescent material, such as CsI(T1), and the remaining part of the pitch is made of x-ray insensitive material, such as silicon. To realize the design, a deep pore array with a high aspect ratio and specially designed grating pattern are successfully manufactured on 5 inch silicon wafer by the photo-assisted electrochemical etching method. The related other problems, such as oxidation-caused geometrical distortion, the filling of CsI(T1) into deep pores and the removal of inside bubbles, have been overcome. Its pixel size, depth and grating pitch are 3 p.m^7.5 ~m, 150 p^m and 3 Ixm, respectively. The microstructure of the scintillator has been examined microscopically and macroscopically by scanning electron microscope and x-ray resolution chart testing, respectively. The preliminary measurements have shown that the proposed scintillator, also functioning as an analyser grating, has been successfully designed and developed.
基金Supported by National Natural Science Foundation of China(11275107,11175099)
文摘The inorganic CsI(Tl) crystal scintillator is a candidate anti-compton detector for the China Dark matter Experiment. Studying the intrinsic radiopurity of the CsI(Tl) crystal is an issue of major importance. The timing, energy and spatial correlations, as well as the capability of pulse shape discrimination provide powerful methods for the measurement of intrinsic radiopurities. The experimental design, detector performance and event-selection algorithms are described. A total of 359×3 kg-days data from three prototypes of CsI(Tl) crystals were taken at China Jinping Underground Laboratory (CJPL), which offers a good shielding environment. The contamination levels of internal isotopes from 137Cs, 232Th and 238U series, as well as the upper bounds of 235U series are reported. Identification of the whole α peaks from U/Th decay chains and derivation of those corresponding quenching factors are achieved.