The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electr...The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.展开更多
Thermal conduetances between Cu and graphene covered carbon nanotubes (gCNTs) are calculated by molecular dynamics simulations. The results show that the thermal conductance is about ten times larger than that of Cu...Thermal conduetances between Cu and graphene covered carbon nanotubes (gCNTs) are calculated by molecular dynamics simulations. The results show that the thermal conductance is about ten times larger than that of Cu- CNT interface. The enhanced thermal conductance is due to the larger contact area introduced by the graphene layer and the stronger thermal transfer ability of the Cu-gCNT interface. From the linear increasing thermal conductance with the increasing total contact area, an effective contact area of such an interface can be defined.展开更多
The reactive spread behaviour of Cu particles on the surJace of Al has been studied.The role of oxide film and the .formation mechanism of the joint during Al/Cu contacting reaction brazing have been discussed.
文摘The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.
基金Supported by the National National Science Foundation of China under Grant No 61131004the Fundamental Research Funds for the Central Universities under Grant No DUT14LAB11
文摘Thermal conduetances between Cu and graphene covered carbon nanotubes (gCNTs) are calculated by molecular dynamics simulations. The results show that the thermal conductance is about ten times larger than that of Cu- CNT interface. The enhanced thermal conductance is due to the larger contact area introduced by the graphene layer and the stronger thermal transfer ability of the Cu-gCNT interface. From the linear increasing thermal conductance with the increasing total contact area, an effective contact area of such an interface can be defined.
文摘The reactive spread behaviour of Cu particles on the surJace of Al has been studied.The role of oxide film and the .formation mechanism of the joint during Al/Cu contacting reaction brazing have been discussed.