The study results of the effects of temperature and ionic strength on the adsorption kineties of Pb ̄2+ and Cu ̄2+ bylatosol, red soil and kaolinte coated with Mn oxide showed that Pb ̄2+ and Cu ̄2+ adsorption by all ...The study results of the effects of temperature and ionic strength on the adsorption kineties of Pb ̄2+ and Cu ̄2+ bylatosol, red soil and kaolinte coated with Mn oxide showed that Pb ̄2+ and Cu ̄2+ adsorption by all samples, as awhole, increased with missing temperature. Temperature also increased both values of X_m (the amount of ionadsorbed at equilibrium) and k (kinetica constant) of Pb ̄2+ and Cu ̄2+. The activation energies of Pb ̄2+ adsorption werekaolin-Mn >red soil>goethite and those of Cu ̄2+ were latosol> red soil > kaolin-Mn >goethite. For a given singlesample the activation energy of Cu ̄2+ was greater than that of Pb ̄2+. Raising ionic strength decreased the adsorptionof Pb ̄2+ and Cu ̄2+ by latosol, red soil and kaolinite coated with Mn oxide but increased Pb ̄2+ and Cu ̄2+ adsorption bygoethite. The contrary results could be explained by the different changes in ion forms of Pb ̄2+ or Cu ̄2+ and in surfacecbarge characteristics of latosol, red soil, kaolin-Mn and goethite. Increasing supporting electrolyte concentration in-creased X_m and k in goethite systems but decreased X_m and k in kaolin-Mn systems. All the time-dependent data fit-ted the surface second-order equation very well.展开更多
A new complex, [Cu(HL)(phen)(H2O)]·4H2O(1, H3L·HCl = 5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, phen = 1,10-phenanthroline), has been hydrothermally prepared and character...A new complex, [Cu(HL)(phen)(H2O)]·4H2O(1, H3L·HCl = 5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, phen = 1,10-phenanthroline), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with a = 14.5520(14), b = 12.6659(12), c = 15.5006(14) A, β = 97.224(2)o, V = 2834.3(5) A3, Z = 4, C27H33N3O11 Cu, Mr = 639.10, Dc = 1.498 g/cm3, μ = 0.837 mm-1, S = 1.047, F(000) = 1332, the final R = 0.0423 and w R = 0.1118 for 18772 observed reflections(I 〉 2σ(I)). The compound is a Cu(Ⅱ) centre mononuclear molecule in the asymmetric unit. The independent binuclear [Cu2(HL)2(phen)2] units are bridged to form a three-dimensional(3D) supramolecular polymer by extensive hydrogen bonds and π-π non-covalent bonding interactions. Moreover, thermogravimetric(TG) analysis and gas adsorption property of 1 were also discussed.展开更多
The objective of the presented work was to assess the adsorption processes of Cu ( II ) from aqueous solution onto a granular activated carbon (GAC) and a modified activated carbon (MAC) with nitric acid. Availa...The objective of the presented work was to assess the adsorption processes of Cu ( II ) from aqueous solution onto a granular activated carbon (GAC) and a modified activated carbon (MAC) with nitric acid. Available surface functional groups, pH of the isoclectric point (pHIEP ), and Fourier transform infrared spectroscopes were obtained to characterize the GAC/MAC. Factors influencing Cu ( II ) adsorption such as adsorbent dosage, pH of solution, and contact time of the adsorption onto the MAC/GAC had been investigated in a batch experiment. Experimental equilibrium data had been obtained and modelled using both Frenndlich and Langmuir dassicai adsorption isotherms and the data fitted better to Langmulr isotherm. It was found that nitric acid modification increased the Cu( II ) adsorption capacity to 90.9 mg/ g, which was higher than the unmodified carbon by 41%. Two simplified models including pseudo-first-order and pseudo-second- order equations were selected to follow the adsorption processes.展开更多
Activated carbons were prepared by two chemical methods and the adsorption of Cu(II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activa...Activated carbons were prepared by two chemical methods and the adsorption of Cu(II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activated carbon following by substitution of chloride groups with amino groups, and the second involved the nitrilation of activated carbon with reduction of nitro groups to amino groups. Resultant activated carbons were characterized in terms of porous structure, elemental analysis, FTIR spectroscopy, XPS, Boehm titration,and p Hzpc. Kinetic and equilibrium tests were performed for copper adsorption in the batch mode. Also,adsorption mechanism and effect of p H on the adsorption of Cu(II) ions were discussed. Adsorption study shows enhanced adsorption for copper on the modified activated carbons, mainly by the presence of amino groups, and the Freundlich model is applicable for the activated carbons. It is suggested that binding of nitrogen atoms with Cu(II) ions is stronger than that with H+ions due to relatively higher divalent charge or stronger electrostatic force.展开更多
The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniqu...The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniques. Both of the methods showed that diffusions were the ratedetermining steps in the Cu ̄2+ adsorp-tion by the soils. By the flow method, the course of Cu ̄2+ adsorption kinetics consisted of two steps-sn initialrapid process and a later slow process of Cu ̄2+ adsorption; while by the batch method, the 90% of Cu ̄2+adsorption reaction was found to finish within first 1 minute. The results obtained using the flow method alsoindicated that for red soil and yellow-brown soil, Cu ̄2+ adsorptions during the initial reaction periods wererestrained when the soils sorbed phosphate, whereas the adsorption reactions were stimulated at the finaltime. For grey Chao soil, sorbed phosphate retarded the Cu ̄2+ adsorption in the whole reaction period. Theresults obtained using the batch method and flow techniques all implied that the different effects of sorbedphosphate would be attributed to its effects on Cu ̄2+ ion diffusion in soil solution.展开更多
The polytetrafluoroethylene fiber grafted acrylic acid was used as a cation exchanger. The exchange capacity of the cation fiber is 3.06 mmol/g. The maximum Cu2+ adsorption capacity is 107.48 mg/g. It could be deso...The polytetrafluoroethylene fiber grafted acrylic acid was used as a cation exchanger. The exchange capacity of the cation fiber is 3.06 mmol/g. The maximum Cu2+ adsorption capacity is 107.48 mg/g. It could be desorbed completely by 1mol/L HCl.展开更多
Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties b...Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties before and after biochar aging with scanning electron microscopy(SEM) coupled to an energy-dispersive X-ray spectrometer(EDX) and diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), and then explored the influence of the aging process on Cu(Ⅱ) adsorption by batch experiments. After the aging process, the oxygen concentration, phenolic hydroxyl groups, aromatic ethers and other oxygen-containing functional groups on the biochar surface increased, while carboxyl groups slightly decreased. Thus, over a range of pH, the cation exchange capacity(CEC) and adsorption capacity of Cu(Ⅱ) on the aged biochar were smaller than those of new biochar,indicating that when biochar is incubated at constant temperature and water holding capacity in the dark, the aging process may inhibit Cu(Ⅱ) adsorption. Meanwhile, the dissociation characteristics of oxygen-containing functional groups changed through the aging process, which may be the mechanism by which the biochar aging process inhibits the Cu(Ⅱ) adsorption. Carboxyl groups became more easily dissociated at low pH(3.3–5.0),and the variation of maximum adsorption capability(qm) of Cu(Ⅱ) on the old biochar was enlarged. Phenolic hydroxyl groups increased after the aging, making them and carboxyl groups more difficult to dissociate at high pH(5.0–6.8), and the variation of qmof Cu(Ⅱ) on the aged biochar was reduced.展开更多
To improve the adsorption effect of biochar on heavy metal Cu(II),we prepared new biochar and explored its modification process influence on original biochar’s physical structure and chemical composition as well as i...To improve the adsorption effect of biochar on heavy metal Cu(II),we prepared new biochar and explored its modification process influence on original biochar’s physical structure and chemical composition as well as its adsorption mechanism for Cu(II)in an aqueous solution.Through research work,we have reached some significant conclusions:(1)The modified biochar(M2-800)can adsorb Cu(II)at the rate of 98.039 mg g–1,38.8 times higher than that of the original biochar C800(2.525 mg g–1);(2)The biochar modification process boosts its etching and pore expansion,helping Cu(II)enter the inner surface of the adsorbent,but chemical adsorption is still the most essential fixation method for Cu(II);(3)The alkaline modification process promotes the formation of oxygen-containing functional groups,in which–OH/–COOH and iron ions would form C-O-Fe structures such as hydroxyl bridges(Fe-O–)and carboxy bridges(Fe-OOC–);(4)Carboxyl is the primary site of Cu(II)fixation in M2-800,and M2-800 has higher electronegativity(–47.8 mV)and larger pH(11.61),so that Cu(II)can be removed by electrostatic attraction and precipitation.展开更多
In recent years,the surge in industrialization and urbanization has led to the release of a significant amount of heavy metal ions into water.These ions,when present in drinking water,can enter the human body and caus...In recent years,the surge in industrialization and urbanization has led to the release of a significant amount of heavy metal ions into water.These ions,when present in drinking water,can enter the human body and cause irreversible health problem.Metal-organic frameworks (MOFs) have drawn considerable attention for their outstanding ability to remove these heavy metal ions.However,MOF powders tend to aggregate in water,reducing their adsorption efficiency and potentially leading to secondary environmental pollution.In this regard,the development of MOF composites that are highly adsorptive,recyclable,and maintain stable dispensability in water is crucial for heavy metal ions removal.Herein,the in situ growth of zeolitic imidazolate framework (ZIF-8) on melamine sponge (MS) using a secondary growth method is reported.The resultant composite sponges exhibit high efficiency in adsorbing Pb(II);Cu(II) from water and maintain good reusability.These findings offer a promising method in efficiently eliminating Pb(II);Cu(II) from aqueous solutions.展开更多
Polyacrylonitrile beads(PAN) cysteine(CS) was synthesized from polyacrylonitrile beads(PAN) and cysteine(CS).The content of the functional group and the percentage conversion of the functional group of PAN-CS ...Polyacrylonitrile beads(PAN) cysteine(CS) was synthesized from polyacrylonitrile beads(PAN) and cysteine(CS).The content of the functional group and the percentage conversion of the functional group of PAN-CS prepared under the optimum condition using response surface methodology(RSM) for the first attempt were 3.22 mmol/g and 35.78%.The structure was characterized by ET-IR and elemental analysis.The adsorption properties of the resin for Cu(Ⅱ) were investigated by batch and column experiments.Batch adsorption results suggested that PAN-CS had higher adsorption capability for Cu(Ⅱ)than other metal ions and maximum saturated adsorption capacity was 184.7 mg/g.The resin and its metal complexes were studied by FT-IR.Furthermore,the resin can be eluted easily using 1 mol/L HC1.PAN-CS can provide a potential application for selective removal of copper from waste solution.展开更多
A novel chelating resin OABA,capable of removing Cu(Ⅱ) from aqueous solution,was synthesized via the reaction of macroporous chloromethylated PS-DVB copolymer beads with orotic acid.The elemental analysis(EA),Fou...A novel chelating resin OABA,capable of removing Cu(Ⅱ) from aqueous solution,was synthesized via the reaction of macroporous chloromethylated PS-DVB copolymer beads with orotic acid.The elemental analysis(EA),Fourier transform infrared spectroscopy(FT-IR),and scanning electron microscopy microscope-energy dispersive X-ray spectroscopy(SEM-EDS) were used in the characterization of the synthesized chelating resin.Multiple,static batch adsorption experiments were conducted at different initial concentrations and temperatures.OABA showed good adsorption capacity for Cu(Ⅱ) and the equilibrium data could be well matched with the Freundlich isotherm model.Coexisting sodium chloride and calcium chloride in solutions favored the Cu(Ⅱ) adsorption.Moreover,the desorption process of Cu(Ⅱ) was tested and over 90%regeneration efficiency for the spent OABA was achieved at ammonia concentrations ranging from 1.0%to 2.0%.The results suggested that OABA would be a potential alternative adsorbent for Cu(Ⅱ),even with other heavy metal ion treatments of wastewater.展开更多
文摘The study results of the effects of temperature and ionic strength on the adsorption kineties of Pb ̄2+ and Cu ̄2+ bylatosol, red soil and kaolinte coated with Mn oxide showed that Pb ̄2+ and Cu ̄2+ adsorption by all samples, as awhole, increased with missing temperature. Temperature also increased both values of X_m (the amount of ionadsorbed at equilibrium) and k (kinetica constant) of Pb ̄2+ and Cu ̄2+. The activation energies of Pb ̄2+ adsorption werekaolin-Mn >red soil>goethite and those of Cu ̄2+ were latosol> red soil > kaolin-Mn >goethite. For a given singlesample the activation energy of Cu ̄2+ was greater than that of Pb ̄2+. Raising ionic strength decreased the adsorptionof Pb ̄2+ and Cu ̄2+ by latosol, red soil and kaolinite coated with Mn oxide but increased Pb ̄2+ and Cu ̄2+ adsorption bygoethite. The contrary results could be explained by the different changes in ion forms of Pb ̄2+ or Cu ̄2+ and in surfacecbarge characteristics of latosol, red soil, kaolin-Mn and goethite. Increasing supporting electrolyte concentration in-creased X_m and k in goethite systems but decreased X_m and k in kaolin-Mn systems. All the time-dependent data fit-ted the surface second-order equation very well.
基金Supported by the National Natural Science Foundation of China(No.21171040)National Undergraduates Innovation Project(201510371010)
文摘A new complex, [Cu(HL)(phen)(H2O)]·4H2O(1, H3L·HCl = 5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, phen = 1,10-phenanthroline), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with a = 14.5520(14), b = 12.6659(12), c = 15.5006(14) A, β = 97.224(2)o, V = 2834.3(5) A3, Z = 4, C27H33N3O11 Cu, Mr = 639.10, Dc = 1.498 g/cm3, μ = 0.837 mm-1, S = 1.047, F(000) = 1332, the final R = 0.0423 and w R = 0.1118 for 18772 observed reflections(I 〉 2σ(I)). The compound is a Cu(Ⅱ) centre mononuclear molecule in the asymmetric unit. The independent binuclear [Cu2(HL)2(phen)2] units are bridged to form a three-dimensional(3D) supramolecular polymer by extensive hydrogen bonds and π-π non-covalent bonding interactions. Moreover, thermogravimetric(TG) analysis and gas adsorption property of 1 were also discussed.
基金The Key Results Promotion of Jiangxi Province,China ( No. 2009CBB00800) Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,China( No. 2010RGET15) Educational Committee of Jiangxi Province,China( No. GJJ12386)
文摘The objective of the presented work was to assess the adsorption processes of Cu ( II ) from aqueous solution onto a granular activated carbon (GAC) and a modified activated carbon (MAC) with nitric acid. Available surface functional groups, pH of the isoclectric point (pHIEP ), and Fourier transform infrared spectroscopes were obtained to characterize the GAC/MAC. Factors influencing Cu ( II ) adsorption such as adsorbent dosage, pH of solution, and contact time of the adsorption onto the MAC/GAC had been investigated in a batch experiment. Experimental equilibrium data had been obtained and modelled using both Frenndlich and Langmuir dassicai adsorption isotherms and the data fitted better to Langmulr isotherm. It was found that nitric acid modification increased the Cu( II ) adsorption capacity to 90.9 mg/ g, which was higher than the unmodified carbon by 41%. Two simplified models including pseudo-first-order and pseudo-second- order equations were selected to follow the adsorption processes.
文摘Activated carbons were prepared by two chemical methods and the adsorption of Cu(II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activated carbon following by substitution of chloride groups with amino groups, and the second involved the nitrilation of activated carbon with reduction of nitro groups to amino groups. Resultant activated carbons were characterized in terms of porous structure, elemental analysis, FTIR spectroscopy, XPS, Boehm titration,and p Hzpc. Kinetic and equilibrium tests were performed for copper adsorption in the batch mode. Also,adsorption mechanism and effect of p H on the adsorption of Cu(II) ions were discussed. Adsorption study shows enhanced adsorption for copper on the modified activated carbons, mainly by the presence of amino groups, and the Freundlich model is applicable for the activated carbons. It is suggested that binding of nitrogen atoms with Cu(II) ions is stronger than that with H+ions due to relatively higher divalent charge or stronger electrostatic force.
文摘The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniques. Both of the methods showed that diffusions were the ratedetermining steps in the Cu ̄2+ adsorp-tion by the soils. By the flow method, the course of Cu ̄2+ adsorption kinetics consisted of two steps-sn initialrapid process and a later slow process of Cu ̄2+ adsorption; while by the batch method, the 90% of Cu ̄2+adsorption reaction was found to finish within first 1 minute. The results obtained using the flow method alsoindicated that for red soil and yellow-brown soil, Cu ̄2+ adsorptions during the initial reaction periods wererestrained when the soils sorbed phosphate, whereas the adsorption reactions were stimulated at the finaltime. For grey Chao soil, sorbed phosphate retarded the Cu ̄2+ adsorption in the whole reaction period. Theresults obtained using the batch method and flow techniques all implied that the different effects of sorbedphosphate would be attributed to its effects on Cu ̄2+ ion diffusion in soil solution.
文摘The polytetrafluoroethylene fiber grafted acrylic acid was used as a cation exchanger. The exchange capacity of the cation fiber is 3.06 mmol/g. The maximum Cu2+ adsorption capacity is 107.48 mg/g. It could be desorbed completely by 1mol/L HCl.
基金supported by the National Natural Science Foundation of China (No. 41271246)the National Key Technology R&D Program of China (No. 2013BAC09B01)
文摘Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties before and after biochar aging with scanning electron microscopy(SEM) coupled to an energy-dispersive X-ray spectrometer(EDX) and diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), and then explored the influence of the aging process on Cu(Ⅱ) adsorption by batch experiments. After the aging process, the oxygen concentration, phenolic hydroxyl groups, aromatic ethers and other oxygen-containing functional groups on the biochar surface increased, while carboxyl groups slightly decreased. Thus, over a range of pH, the cation exchange capacity(CEC) and adsorption capacity of Cu(Ⅱ) on the aged biochar were smaller than those of new biochar,indicating that when biochar is incubated at constant temperature and water holding capacity in the dark, the aging process may inhibit Cu(Ⅱ) adsorption. Meanwhile, the dissociation characteristics of oxygen-containing functional groups changed through the aging process, which may be the mechanism by which the biochar aging process inhibits the Cu(Ⅱ) adsorption. Carboxyl groups became more easily dissociated at low pH(3.3–5.0),and the variation of maximum adsorption capability(qm) of Cu(Ⅱ) on the old biochar was enlarged. Phenolic hydroxyl groups increased after the aging, making them and carboxyl groups more difficult to dissociate at high pH(5.0–6.8), and the variation of qmof Cu(Ⅱ) on the aged biochar was reduced.
基金the National Natural Science Foundation of China(41571283)the National Key Research and Development Program of China(2018YFD0800703,2016YFD0800702)the Fundamental Research Funds for the Central Universities(2662018PY078).
文摘To improve the adsorption effect of biochar on heavy metal Cu(II),we prepared new biochar and explored its modification process influence on original biochar’s physical structure and chemical composition as well as its adsorption mechanism for Cu(II)in an aqueous solution.Through research work,we have reached some significant conclusions:(1)The modified biochar(M2-800)can adsorb Cu(II)at the rate of 98.039 mg g–1,38.8 times higher than that of the original biochar C800(2.525 mg g–1);(2)The biochar modification process boosts its etching and pore expansion,helping Cu(II)enter the inner surface of the adsorbent,but chemical adsorption is still the most essential fixation method for Cu(II);(3)The alkaline modification process promotes the formation of oxygen-containing functional groups,in which–OH/–COOH and iron ions would form C-O-Fe structures such as hydroxyl bridges(Fe-O–)and carboxy bridges(Fe-OOC–);(4)Carboxyl is the primary site of Cu(II)fixation in M2-800,and M2-800 has higher electronegativity(–47.8 mV)and larger pH(11.61),so that Cu(II)can be removed by electrostatic attraction and precipitation.
基金supported by the Project of the Departments of Science and Technology of Jilin Province,China (Nos.20220101230JC,YDZJ202201ZYTS592).
文摘In recent years,the surge in industrialization and urbanization has led to the release of a significant amount of heavy metal ions into water.These ions,when present in drinking water,can enter the human body and cause irreversible health problem.Metal-organic frameworks (MOFs) have drawn considerable attention for their outstanding ability to remove these heavy metal ions.However,MOF powders tend to aggregate in water,reducing their adsorption efficiency and potentially leading to secondary environmental pollution.In this regard,the development of MOF composites that are highly adsorptive,recyclable,and maintain stable dispensability in water is crucial for heavy metal ions removal.Herein,the in situ growth of zeolitic imidazolate framework (ZIF-8) on melamine sponge (MS) using a secondary growth method is reported.The resultant composite sponges exhibit high efficiency in adsorbing Pb(II);Cu(II) from water and maintain good reusability.These findings offer a promising method in efficiently eliminating Pb(II);Cu(II) from aqueous solutions.
基金supported by the National Natural Science Foundation of China (No. 21276235)Ph.D. Programs Foundation of Ministry of Education of China (No. 20133326110006)+2 种基金The Program of Science and Technology of Zhejiang Province, China (No. 2015C3704)Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Sci-Tech University (No. YR2015002)Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology (No. 2005002)
文摘Polyacrylonitrile beads(PAN) cysteine(CS) was synthesized from polyacrylonitrile beads(PAN) and cysteine(CS).The content of the functional group and the percentage conversion of the functional group of PAN-CS prepared under the optimum condition using response surface methodology(RSM) for the first attempt were 3.22 mmol/g and 35.78%.The structure was characterized by ET-IR and elemental analysis.The adsorption properties of the resin for Cu(Ⅱ) were investigated by batch and column experiments.Batch adsorption results suggested that PAN-CS had higher adsorption capability for Cu(Ⅱ)than other metal ions and maximum saturated adsorption capacity was 184.7 mg/g.The resin and its metal complexes were studied by FT-IR.Furthermore,the resin can be eluted easily using 1 mol/L HC1.PAN-CS can provide a potential application for selective removal of copper from waste solution.
基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A novel chelating resin OABA,capable of removing Cu(Ⅱ) from aqueous solution,was synthesized via the reaction of macroporous chloromethylated PS-DVB copolymer beads with orotic acid.The elemental analysis(EA),Fourier transform infrared spectroscopy(FT-IR),and scanning electron microscopy microscope-energy dispersive X-ray spectroscopy(SEM-EDS) were used in the characterization of the synthesized chelating resin.Multiple,static batch adsorption experiments were conducted at different initial concentrations and temperatures.OABA showed good adsorption capacity for Cu(Ⅱ) and the equilibrium data could be well matched with the Freundlich isotherm model.Coexisting sodium chloride and calcium chloride in solutions favored the Cu(Ⅱ) adsorption.Moreover,the desorption process of Cu(Ⅱ) was tested and over 90%regeneration efficiency for the spent OABA was achieved at ammonia concentrations ranging from 1.0%to 2.0%.The results suggested that OABA would be a potential alternative adsorbent for Cu(Ⅱ),even with other heavy metal ion treatments of wastewater.