A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibri...A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.展开更多
Deposition of diamond inside the trenches or microchannels by chemical vapor deposition (CVD) is limited by the diffusion efficiency of important radical species for diamond growth (H, CH3) and the pore depth of t...Deposition of diamond inside the trenches or microchannels by chemical vapor deposition (CVD) is limited by the diffusion efficiency of important radical species for diamond growth (H, CH3) and the pore depth of the substrate template. By ultrasonic seeding with nanodiamond suspension, three-dimensional (3D) penetration structure diamond was successfully deposited in cylindrical microchannels of Cu template by hot-filament chemical vapor deposition. Micro-Raman spectroscopy and scanning electron microscopy (SEM) were used to characterize diamond film and the effects of microchannel depth on the morphology, grain size and growth rate of diamond film were comprehensively investigated. The results show that diamond quality and growth rate sharply decrease with the increase of the depth of cylindrical microchannel. Individual diamond grain develops gradually from faceted crystals into micrometer cluster, and finally to ballas-type nanocrystalline one. In order to modify the rapid decrease of diamond quality and growth rate, a new hot filament apparatus with a forced gas flow through Cu microchannels was designed. Furthermore, the growth of diamond film by new apparatus was compared with that without a forced gas flow, and the enhancement mechanism was discussed.展开更多
A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium sha...A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition(HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope(FE-SEM) with energy dispersive X-ray detector(EDX). Results show that the nucleation density is found to be up to 1010 cm-2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.展开更多
The continuous pursuit of miniaturization in the electronics and optoelectronics industry demands all device components with smaller size and higher performance,in which thin metal film is one heart material as conduc...The continuous pursuit of miniaturization in the electronics and optoelectronics industry demands all device components with smaller size and higher performance,in which thin metal film is one heart material as conductive electrodes.However,conventional metal filmns are typically polycrystalline with random domain orientations and various grain boundaries,which greatly degrade their mechanical,thermal and electrical properties.Hence,it is highly demanded to produce single-crystal metal films with epitaxy in an appealing route.Traditional epitaxy on non-metal single-crystal substrates has difficulty in exfoliating away due to the formation of chemical bonds.Newly developed epitaxy on single-crystal graphene enables the easy exfoliation of epilayers but the annealing temperature must be high(typical 500-1,000℃ and out of the tolerant range of integrated circuit technology)due to the relative weak intertacial interactions.Here we demonstrate the facile production of 6-inch transferable high-quality Pd(111)filims on single-crystal hybrid graphene/Cu(111)substrate with CMOS-compatible annealing temperature of 150℃ only.The interfacial interaction between Pd and hybrid graphene/Cu(111)substrate is strong enough to enable the low-temperature epitaxy of Pd(111)films and weak enough to facilitate the easy film release from substrate.The obtained Pd(111)films possess superior properties to polyrystalline ones with-0.25 eV higher work function and almost half sheet resistance.This technique is proved to be applicable to other metals,such as Au and Ag.As the single-crystal graphene/Cu(111)substrates are obtained from industrial Cu foils and accessible in meter scale,our work will promote the massive applications of large-area high-quality metal fims in the development of next-generation electronic and optoelectronic devices.展开更多
Recently,graphene has drawn considerable attention in the field of electronics,owing to its favorable conductivity and high carrier mobility.Crucial to the industrialization of graphene is its high-quality microfabric...Recently,graphene has drawn considerable attention in the field of electronics,owing to its favorable conductivity and high carrier mobility.Crucial to the industrialization of graphene is its high-quality microfabrication via chemical vapor deposition.However,many problems remain in its preparation,such as the not fully understood cracking mechanism of the carbon source,the mechanism of its substrate oxidation,and insufficient defect repair theory.To help close this capability gap,this study leverages density functional theory to explore the role of O in graphene growth.The effects of Cu substrate oxidation on carbon source cracking,nucleation barriers,crystal nucleus growth,and defect repairs are discussed.OCu was found to reduce energy change during dehydrogenation,rendering the process easier.Moreover,the adsorbed O in graphene or its Cu substrate can promote defect repair and edge growth.展开更多
基金Project(20110933K) supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(2012QNZT002) supported by the Freedom Explore Program of Central South University,ChinaProject(CSUZC2012024) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.
基金Project(21271188) supported by the Nature Science Foundation of China
文摘Deposition of diamond inside the trenches or microchannels by chemical vapor deposition (CVD) is limited by the diffusion efficiency of important radical species for diamond growth (H, CH3) and the pore depth of the substrate template. By ultrasonic seeding with nanodiamond suspension, three-dimensional (3D) penetration structure diamond was successfully deposited in cylindrical microchannels of Cu template by hot-filament chemical vapor deposition. Micro-Raman spectroscopy and scanning electron microscopy (SEM) were used to characterize diamond film and the effects of microchannel depth on the morphology, grain size and growth rate of diamond film were comprehensively investigated. The results show that diamond quality and growth rate sharply decrease with the increase of the depth of cylindrical microchannel. Individual diamond grain develops gradually from faceted crystals into micrometer cluster, and finally to ballas-type nanocrystalline one. In order to modify the rapid decrease of diamond quality and growth rate, a new hot filament apparatus with a forced gas flow through Cu microchannels was designed. Furthermore, the growth of diamond film by new apparatus was compared with that without a forced gas flow, and the enhancement mechanism was discussed.
基金Project(21271188) supported by the National Natural Science Foundation of China
文摘A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition(HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope(FE-SEM) with energy dispersive X-ray detector(EDX). Results show that the nucleation density is found to be up to 1010 cm-2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.
基金the National Key R&D Program of China(Nos.2016YFA0300903 and 2016YFA0300804)the National Natural Science Foundation of China(NSFC)(No.11888101)+4 种基金the National Equipment Program of China(No.ZDYZ2015-1)Beijing Graphene Innovation Program(No.Z181100004818003)Beijing Municipal Science&Technology Commission(No.Z181100004218006)Bureau of Industry and Information Technology of Shenzhen(Graphene platform contract NO.201901161512)the Key R&D Program of Guangdong Province(No.2019B010931001).
文摘The continuous pursuit of miniaturization in the electronics and optoelectronics industry demands all device components with smaller size and higher performance,in which thin metal film is one heart material as conductive electrodes.However,conventional metal filmns are typically polycrystalline with random domain orientations and various grain boundaries,which greatly degrade their mechanical,thermal and electrical properties.Hence,it is highly demanded to produce single-crystal metal films with epitaxy in an appealing route.Traditional epitaxy on non-metal single-crystal substrates has difficulty in exfoliating away due to the formation of chemical bonds.Newly developed epitaxy on single-crystal graphene enables the easy exfoliation of epilayers but the annealing temperature must be high(typical 500-1,000℃ and out of the tolerant range of integrated circuit technology)due to the relative weak intertacial interactions.Here we demonstrate the facile production of 6-inch transferable high-quality Pd(111)filims on single-crystal hybrid graphene/Cu(111)substrate with CMOS-compatible annealing temperature of 150℃ only.The interfacial interaction between Pd and hybrid graphene/Cu(111)substrate is strong enough to enable the low-temperature epitaxy of Pd(111)films and weak enough to facilitate the easy film release from substrate.The obtained Pd(111)films possess superior properties to polyrystalline ones with-0.25 eV higher work function and almost half sheet resistance.This technique is proved to be applicable to other metals,such as Au and Ag.As the single-crystal graphene/Cu(111)substrates are obtained from industrial Cu foils and accessible in meter scale,our work will promote the massive applications of large-area high-quality metal fims in the development of next-generation electronic and optoelectronic devices.
基金the National Natural Science Foundation of China(Nos.T2188101,52021006,and 52072042)the National Natural Science Foundation Youth Fund(Nos.22105006 and 52202033)+2 种基金Beijing National Laboratory for Molecular Science(No.BNLMS-CXTD-202001)the National Key R&D Program of China(Nos.2016YFA0200101,2016YFA0200103,and 2018YFA0703502)the Beijing Municipal Science&Technology Commission(Nos.Z191100000819005,Z191100000819007,and Z201100008720005).
文摘Recently,graphene has drawn considerable attention in the field of electronics,owing to its favorable conductivity and high carrier mobility.Crucial to the industrialization of graphene is its high-quality microfabrication via chemical vapor deposition.However,many problems remain in its preparation,such as the not fully understood cracking mechanism of the carbon source,the mechanism of its substrate oxidation,and insufficient defect repair theory.To help close this capability gap,this study leverages density functional theory to explore the role of O in graphene growth.The effects of Cu substrate oxidation on carbon source cracking,nucleation barriers,crystal nucleus growth,and defect repairs are discussed.OCu was found to reduce energy change during dehydrogenation,rendering the process easier.Moreover,the adsorbed O in graphene or its Cu substrate can promote defect repair and edge growth.