The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,im...The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,immersion corrosion testing,and electrochemical measurement.The results show that a smooth coating containing NiAl,Ni_(3)Al,M_(7)C_(3),M_(23)C_(6)phases(M=Ni,Al,Cr,W,Fe)and WC particles is prepared by laser cladding.Under a laser scanning speed of 120 mm/min,the microhardness of the cladding coating is 9−11 times that of AlSi5Cu1Mg,due to the synergistic effect of excellent metallurgical bond and newly formed carbides.The Ni−WC coating shows higher corrosion potential(−318.09 mV)and lower corrosion current density(12.33μA/cm^(2))compared with the matrix.The crack-free,dense cladding coating obviously inhibits the penetration of Cl^(−)and H^(+),leading to the remarkedly improved corrosion resistance of cladding coating.展开更多
The title coordination polymer 1,{[Cu8(btb)2(CN)8].3H2O}n(btb = 1,4-bis(1,2,4-triazol-1-yl)butane),has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction.Complex...The title coordination polymer 1,{[Cu8(btb)2(CN)8].3H2O}n(btb = 1,4-bis(1,2,4-triazol-1-yl)butane),has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction.Complex 1 crystallizes in monoclinic,space group C2/c with a = 1.2938(3),b = 1.9422(5),c = 0.9406(2) nm,β = 121.891(4)°,V = 2.0066(9) nm3,C24H30Cu8N20O3,Mr = 1155.00,Dc = 1.912 g/cm3,μ(MoKα) = 4.209 mm?1,F(000) = 1140,GOF = 1.184,Z = 2,the final R = 0.0634 and wR = 0.1503 for I 2σ(I).In complex 1,one-dimensional CuCN zigzag chains are linked by triazolyl groups of btb ligands to form two-dimensional networks,which are further bridged by 1,4-butyl moieties of btb ligands to fabricate a three-dimensional order framework,in which one-dimensional ellipsoid-like channels are observed.展开更多
The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied b...The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied by optical microscopy and scanning electron microscopy, and the phase constitution of the Cu/A1 joints was analyzed by energy dispersion spectrometry. The results show that the spreading area of the Zn-A1 filler metals on the Cu and A1 substrates increases as the A1 content increases. The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when A1 and Cu are brazed with Zn-15AI filler metal. Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features. The Zn- and Al-rich phases exist in the middle brazing seam regions. However, two interface layers, CuZn3 and A12Cu are formed on the Cu side when the A1 content in the filler metals is 2% and more than 15%, respectively. The relationship between intermetallic compounds on Cu side and Zn-xA1 filler metals was investigated.展开更多
The composite plate made by explosion welding technology generally has high residual stress and bed plasticity due to the explosion reinforcement. The heat treatment can play a part of eliminating stress and recoverin...The composite plate made by explosion welding technology generally has high residual stress and bed plasticity due to the explosion reinforcement. The heat treatment can play a part of eliminating stress and recovering property.In this study,TA1/Q345 clad plate made by explosive welding was annealed at different temperatures.The microstructure,micro-hardness,and tensile,shear,and bending properties were analyzed after anneal.The result shows that there is fibrous structure in the bonding zone and the plastic deformation is severe,the grain growth and fibrous structure dribbles away with the temperature increasing.Micro-hardness in the interface is bigger than it on the both sides. Tensile and shear strength reduced with the temperature of heat treatment increasing.The propel anneal temperature for TA1/Q345 clad plate is 600展开更多
利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究。结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时...利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究。结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时,稀释率极低;界面区由Fe3Si化合物、α-Fe及ε-Cu组成。送丝速度较低时,界面结构为Fe3Si/α-Fe+ε-Cu/α-Fe,熔敷区出现Fe2Si化合物;提高送丝速度,界面结构为Fe3Si+α-Fe+ε-Cu/α-Fe+ε-Cu,Fe2Si化合物被Fe3Si化合物取代;进一步提高送丝速度,界面结构为α-Fe+ε-Cu,弥散分布的球状富铁相聚合成长为星状及大块团状的α-Fe固溶体。送丝速度的变化对熔敷区组织具有显著影响。展开更多
Efforts in a large number of transition metal-carbon systems are devoted to the development of efficient catalysts for oxygen reduction reaction(ORR).However,unsatisfied O_(2)adsorption and slow reduction of OH*at the...Efforts in a large number of transition metal-carbon systems are devoted to the development of efficient catalysts for oxygen reduction reaction(ORR).However,unsatisfied O_(2)adsorption and slow reduction of OH*at the active centers hinder the further development of these catalysts.We here report a gasifiable reductant strategy,of which a new Cu-based metal organic framework(MOF:termed NTU-83)nanosheet was co-pyrolyzed with melamine to produce the N-coordinated atomic Cu and multi-oxidated Cu_(2+1)O active centers on the carbon foam with ultrathin skeleton.The engineered electrons and configuration of the active centers boost the catalyst(Cu/NC-1000)to show superior ORR activity(E_(1/2)=0.85 V),excellent stability,and methanol resistance.Further modeling calculation and controlled experiments reveal that the Cu_(2+1)O species play a crucial role in kinetically accelerated adsorption and activation of O_(2),while the N_(4)coordinated atomic Cu facilitates fast reduction of OH*.Such characteristics endow the Zn-air battery that containing Cu/NC-1000 as air cathode to show a high peak power density(138 mW·cm^(−2)),a high specific capacity of 763 mAh·gZn^(−1),and outstanding long-term cycle stability.The plausible mechanism and excellent performance show that gasifiable reductant strategy opens up a new route for regulation of the electronic of active sites but also provides a candidate for the practical application in energy conversion/storage devices.展开更多
A Schiff base ligand 4-[indol-3-yl]-but-3-en-2-one benzoyl hydrazone (HL), and its four transition metal complexes (ML2,M=Cu(, Ni(, Zn( and Co() have been prepared and characterized by means of elemental analysis, EI-...A Schiff base ligand 4-[indol-3-yl]-but-3-en-2-one benzoyl hydrazone (HL), and its four transition metal complexes (ML2,M=Cu(, Ni(, Zn( and Co() have been prepared and characterized by means of elemental analysis, EI-MS, molar conductivity, IR, UV-Vis and 1H NMR. The results showed that HL as a bidentate ligand coordinated with transition metal ions to form four-coordination complexes. The antibacterial activity was studied by using the filter scraps diffusion method, and the results indicated that the ligand and the complexes had a low bacteriostatic activity against S. Aureu, P. Aeruginosa and E. Coli. The low in vitro antitumor activity of the title complexes was also observed by using MTT method against KB, A2780, Bel7402 and HELF.展开更多
文摘The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,immersion corrosion testing,and electrochemical measurement.The results show that a smooth coating containing NiAl,Ni_(3)Al,M_(7)C_(3),M_(23)C_(6)phases(M=Ni,Al,Cr,W,Fe)and WC particles is prepared by laser cladding.Under a laser scanning speed of 120 mm/min,the microhardness of the cladding coating is 9−11 times that of AlSi5Cu1Mg,due to the synergistic effect of excellent metallurgical bond and newly formed carbides.The Ni−WC coating shows higher corrosion potential(−318.09 mV)and lower corrosion current density(12.33μA/cm^(2))compared with the matrix.The crack-free,dense cladding coating obviously inhibits the penetration of Cl^(−)and H^(+),leading to the remarkedly improved corrosion resistance of cladding coating.
基金Supported by Nanjing University of Posts and Telecommunications (No. NY209032)the National Natural Science Foundation of China (No. 21001065)the Major State Basic Research Development Program of China (973 Program,No. 2009CB930600)
文摘The title coordination polymer 1,{[Cu8(btb)2(CN)8].3H2O}n(btb = 1,4-bis(1,2,4-triazol-1-yl)butane),has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction.Complex 1 crystallizes in monoclinic,space group C2/c with a = 1.2938(3),b = 1.9422(5),c = 0.9406(2) nm,β = 121.891(4)°,V = 2.0066(9) nm3,C24H30Cu8N20O3,Mr = 1155.00,Dc = 1.912 g/cm3,μ(MoKα) = 4.209 mm?1,F(000) = 1140,GOF = 1.184,Z = 2,the final R = 0.0634 and wR = 0.1503 for I 2σ(I).In complex 1,one-dimensional CuCN zigzag chains are linked by triazolyl groups of btb ligands to form two-dimensional networks,which are further bridged by 1,4-butyl moieties of btb ligands to fabricate a three-dimensional order framework,in which one-dimensional ellipsoid-like channels are observed.
基金Project (2009GJC20040) supported by the Scientist and Technician Serve the Enterprise,MOST,China
文摘The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied by optical microscopy and scanning electron microscopy, and the phase constitution of the Cu/A1 joints was analyzed by energy dispersion spectrometry. The results show that the spreading area of the Zn-A1 filler metals on the Cu and A1 substrates increases as the A1 content increases. The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when A1 and Cu are brazed with Zn-15AI filler metal. Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features. The Zn- and Al-rich phases exist in the middle brazing seam regions. However, two interface layers, CuZn3 and A12Cu are formed on the Cu side when the A1 content in the filler metals is 2% and more than 15%, respectively. The relationship between intermetallic compounds on Cu side and Zn-xA1 filler metals was investigated.
基金supported by National Natural Science Foundation of China(Grant No.51274162)Scientific Research Plan Project of Shaanxi Education Department(Grant No.14JK1539)Collaborative Innovation Project of Shaanxi Province(Grant No.2015XT-39)
文摘The composite plate made by explosion welding technology generally has high residual stress and bed plasticity due to the explosion reinforcement. The heat treatment can play a part of eliminating stress and recovering property.In this study,TA1/Q345 clad plate made by explosive welding was annealed at different temperatures.The microstructure,micro-hardness,and tensile,shear,and bending properties were analyzed after anneal.The result shows that there is fibrous structure in the bonding zone and the plastic deformation is severe,the grain growth and fibrous structure dribbles away with the temperature increasing.Micro-hardness in the interface is bigger than it on the both sides. Tensile and shear strength reduced with the temperature of heat treatment increasing.The propel anneal temperature for TA1/Q345 clad plate is 600
文摘利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究。结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时,稀释率极低;界面区由Fe3Si化合物、α-Fe及ε-Cu组成。送丝速度较低时,界面结构为Fe3Si/α-Fe+ε-Cu/α-Fe,熔敷区出现Fe2Si化合物;提高送丝速度,界面结构为Fe3Si+α-Fe+ε-Cu/α-Fe+ε-Cu,Fe2Si化合物被Fe3Si化合物取代;进一步提高送丝速度,界面结构为α-Fe+ε-Cu,弥散分布的球状富铁相聚合成长为星状及大块团状的α-Fe固溶体。送丝速度的变化对熔敷区组织具有显著影响。
基金support from the National Natural Science Foundation of China(No.22171135)the Young and Middle-aged Academic Leader of Jiangsu Provincial Blue Project,the State Key Laboratory of Materials-Oriented Chemical Engineering(No.ZK201803)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).
文摘Efforts in a large number of transition metal-carbon systems are devoted to the development of efficient catalysts for oxygen reduction reaction(ORR).However,unsatisfied O_(2)adsorption and slow reduction of OH*at the active centers hinder the further development of these catalysts.We here report a gasifiable reductant strategy,of which a new Cu-based metal organic framework(MOF:termed NTU-83)nanosheet was co-pyrolyzed with melamine to produce the N-coordinated atomic Cu and multi-oxidated Cu_(2+1)O active centers on the carbon foam with ultrathin skeleton.The engineered electrons and configuration of the active centers boost the catalyst(Cu/NC-1000)to show superior ORR activity(E_(1/2)=0.85 V),excellent stability,and methanol resistance.Further modeling calculation and controlled experiments reveal that the Cu_(2+1)O species play a crucial role in kinetically accelerated adsorption and activation of O_(2),while the N_(4)coordinated atomic Cu facilitates fast reduction of OH*.Such characteristics endow the Zn-air battery that containing Cu/NC-1000 as air cathode to show a high peak power density(138 mW·cm^(−2)),a high specific capacity of 763 mAh·gZn^(−1),and outstanding long-term cycle stability.The plausible mechanism and excellent performance show that gasifiable reductant strategy opens up a new route for regulation of the electronic of active sites but also provides a candidate for the practical application in energy conversion/storage devices.
文摘A Schiff base ligand 4-[indol-3-yl]-but-3-en-2-one benzoyl hydrazone (HL), and its four transition metal complexes (ML2,M=Cu(, Ni(, Zn( and Co() have been prepared and characterized by means of elemental analysis, EI-MS, molar conductivity, IR, UV-Vis and 1H NMR. The results showed that HL as a bidentate ligand coordinated with transition metal ions to form four-coordination complexes. The antibacterial activity was studied by using the filter scraps diffusion method, and the results indicated that the ligand and the complexes had a low bacteriostatic activity against S. Aureu, P. Aeruginosa and E. Coli. The low in vitro antitumor activity of the title complexes was also observed by using MTT method against KB, A2780, Bel7402 and HELF.