AA7085 aluminum alloys with different Cu/Mg ratios (0.67, 1.0, 1.06, 1.6) were prepared by ingot metallurgy method. The effects of Cu/Mg ratio on the microstructure, mechanical properties and corrosion behavior of t...AA7085 aluminum alloys with different Cu/Mg ratios (0.67, 1.0, 1.06, 1.6) were prepared by ingot metallurgy method. The effects of Cu/Mg ratio on the microstructure, mechanical properties and corrosion behavior of the AA7085 alloys were investigated by optical microscope, scanning electron microscope (SEM), mechanical properties and corrosion testing. The results indicate that a better recrystallization inhibition and corrosion resistance can be achieved when Cu/Mg ratio is 1.6. When Cu/Mg ratio is 0.67, the alloy reveals better mechanical properties, and the tensile strength and yield strength of AA7085 alloys are 586 and 550 MPa, respectively. Moreover, both the mechanical properties and corrosion resistance of the alloy are reduced when Cu/Mg ratio is equal to 1.0.展开更多
The influence of different Si contents on the microstructure evolution and mechanical properties of Al⁃Mg⁃Si⁃Cu⁃Zn alloys was systematically studied using tensile testing,OM,SEM,EDS,and EBSD.The results indicate that ...The influence of different Si contents on the microstructure evolution and mechanical properties of Al⁃Mg⁃Si⁃Cu⁃Zn alloys was systematically studied using tensile testing,OM,SEM,EDS,and EBSD.The results indicate that the grain size of as⁃cast alloys was gradually reduced with the increase of the Si content,which mainly resulted from the formation of many iron⁃rich phases and precipitates during the casting process.During homogenization treatment,the plate⁃likeβ⁃AlFeSi phases in the alloy with a higher Si content easily transformed to the sphericalα⁃Al(FeMn)Si phases,which is helpful for improving the formability of alloys.The microstructure evolution of the alloys was also greatly dependent on the content of Si that the number density and homogeneous distribution level of precipitates in the final cold rolled alloys both increased with the increase of the Si content,which further provided a positive effect on the formation of fine recrystallization grains during the subsequent solution treatment.As a result,the yield strength,ultimate tensile strength,and elongation of the pre⁃aged alloys in the direction of 45°with respect to the rolling direction were all increased with increasing Si content.展开更多
Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in ...Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.展开更多
基金Projects(51271152,51021063)supported by the National Natural Science Foundation of ChinaProject(13JJ6006)supported by Hunan Provincial Natural Science Foundation,ChinaProject(2012CB619502)supported by National Basic Research Program of China
文摘AA7085 aluminum alloys with different Cu/Mg ratios (0.67, 1.0, 1.06, 1.6) were prepared by ingot metallurgy method. The effects of Cu/Mg ratio on the microstructure, mechanical properties and corrosion behavior of the AA7085 alloys were investigated by optical microscope, scanning electron microscope (SEM), mechanical properties and corrosion testing. The results indicate that a better recrystallization inhibition and corrosion resistance can be achieved when Cu/Mg ratio is 1.6. When Cu/Mg ratio is 0.67, the alloy reveals better mechanical properties, and the tensile strength and yield strength of AA7085 alloys are 586 and 550 MPa, respectively. Moreover, both the mechanical properties and corrosion resistance of the alloy are reduced when Cu/Mg ratio is equal to 1.0.
基金Supported by the National Key Research and Development Program of China(Grant No.2016YFB0300801)the National Natural Science Foundation of China(Grant Nos.51871029,51571023 and 51301016)+1 种基金the Beijing Natural Science Foundation(Grant No.2172038)the Government Guided Program Intergovernmental Bilateral Innovation Cooperation Project(Grant No.BZ2019019)
文摘The influence of different Si contents on the microstructure evolution and mechanical properties of Al⁃Mg⁃Si⁃Cu⁃Zn alloys was systematically studied using tensile testing,OM,SEM,EDS,and EBSD.The results indicate that the grain size of as⁃cast alloys was gradually reduced with the increase of the Si content,which mainly resulted from the formation of many iron⁃rich phases and precipitates during the casting process.During homogenization treatment,the plate⁃likeβ⁃AlFeSi phases in the alloy with a higher Si content easily transformed to the sphericalα⁃Al(FeMn)Si phases,which is helpful for improving the formability of alloys.The microstructure evolution of the alloys was also greatly dependent on the content of Si that the number density and homogeneous distribution level of precipitates in the final cold rolled alloys both increased with the increase of the Si content,which further provided a positive effect on the formation of fine recrystallization grains during the subsequent solution treatment.As a result,the yield strength,ultimate tensile strength,and elongation of the pre⁃aged alloys in the direction of 45°with respect to the rolling direction were all increased with increasing Si content.
基金Supported by the Key Research and Development Project of Guangdong Province(No.2020B1111510001)the National Natural Science Foundation of China(No.U2244224)+1 种基金the PI Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2020GD0802)the Guangdong Special Support Team Program(No.2019BT02H594)。
文摘Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.