Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in d...Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).展开更多
A series of Cu/Zn based catalysts with and without Ni, prepared by the co-precipitation method, has been studied for methanol decomposition. CO and H2 are the major products. The Cu/Zn catalysts show a low initial act...A series of Cu/Zn based catalysts with and without Ni, prepared by the co-precipitation method, has been studied for methanol decomposition. CO and H2 are the major products. The Cu/Zn catalysts show a low initial activity and a poor stability. The formation of the CuZn alloys was observed in the deactivated Cu/Zn catalysts which were used for methanol decomposition at 250 . When small amounts of Ni were added in the catalyst, the Cu/Zn/Ni(molar ratio 5/4/ x) catalysts showed a high activity at a low temperature. The activity and the stability of the catalyst depend on the nickel content. The activity of the Cu/Zn/Ni catalysts was maintained at a. relatively stable value of 78% conversion of methanol with 95% selectivity of H2, 93% selectivity of CO, and a more than 70% yield of hydrogen was obtained at 250 C when x >1. The stability of the Cu/Zn/Ni (molar ratio 5/4/x) catalysts showed the maximum (ca 88%) when x=1. The stabilization effect of nickel on the Cu/Zn based catalysts may lead to the increasing of the dispersion of active Cu species and the prevention of CuZn alloys formation.展开更多
Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,c...Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.展开更多
针对近场通信(NFC)应用,通过改变材料中的Bi2O3含量和二磨后粉体活性,开发了一种高性能的Ni Cu Zn铁氧体材料。使用流延法制备长宽为125×125mm、厚度为100μm的铁氧体薄片。观察、测试了铁氧体材料的微观形貌、磁导率频谱以及铁氧...针对近场通信(NFC)应用,通过改变材料中的Bi2O3含量和二磨后粉体活性,开发了一种高性能的Ni Cu Zn铁氧体材料。使用流延法制备长宽为125×125mm、厚度为100μm的铁氧体薄片。观察、测试了铁氧体材料的微观形貌、磁导率频谱以及铁氧体薄片的可读写距离。结果表明,铁氧体薄片的使用性能与铁氧体材料在13.56MHz时磁导率实部μ'、虚部μ"的值有关。通过改变材料中Bi2O3含量以及二磨后粉体活性,可获得致密度高、晶粒细小均匀,低频下μ'较高、μ"较低的铁氧体材料。在13.56MHz时磁导率实部μ'高于150,虚部μ"低于5。插入该铁氧体薄片后RFID天线紧贴金属的情况下可读写距离可以恢复到原始读写距离的80%。展开更多
基金supported by the National Basic Research Program of China (No. 2011CB201404)the financial support of the State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO) of China
文摘Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).
文摘A series of Cu/Zn based catalysts with and without Ni, prepared by the co-precipitation method, has been studied for methanol decomposition. CO and H2 are the major products. The Cu/Zn catalysts show a low initial activity and a poor stability. The formation of the CuZn alloys was observed in the deactivated Cu/Zn catalysts which were used for methanol decomposition at 250 . When small amounts of Ni were added in the catalyst, the Cu/Zn/Ni(molar ratio 5/4/ x) catalysts showed a high activity at a low temperature. The activity and the stability of the catalyst depend on the nickel content. The activity of the Cu/Zn/Ni catalysts was maintained at a. relatively stable value of 78% conversion of methanol with 95% selectivity of H2, 93% selectivity of CO, and a more than 70% yield of hydrogen was obtained at 250 C when x >1. The stability of the Cu/Zn/Ni (molar ratio 5/4/x) catalysts showed the maximum (ca 88%) when x=1. The stabilization effect of nickel on the Cu/Zn based catalysts may lead to the increasing of the dispersion of active Cu species and the prevention of CuZn alloys formation.
基金financially supported by the National Natural Science Foundation of China(No.U1810205)the National Basic Research Program of China(No.2014CB 643401)Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes。
文摘Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.
文摘针对近场通信(NFC)应用,通过改变材料中的Bi2O3含量和二磨后粉体活性,开发了一种高性能的Ni Cu Zn铁氧体材料。使用流延法制备长宽为125×125mm、厚度为100μm的铁氧体薄片。观察、测试了铁氧体材料的微观形貌、磁导率频谱以及铁氧体薄片的可读写距离。结果表明,铁氧体薄片的使用性能与铁氧体材料在13.56MHz时磁导率实部μ'、虚部μ"的值有关。通过改变材料中Bi2O3含量以及二磨后粉体活性,可获得致密度高、晶粒细小均匀,低频下μ'较高、μ"较低的铁氧体材料。在13.56MHz时磁导率实部μ'高于150,虚部μ"低于5。插入该铁氧体薄片后RFID天线紧贴金属的情况下可读写距离可以恢复到原始读写距离的80%。