We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the ...We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the 1D-Solar Cell Capacitance Simulator (1D-SCAPS) software program. The new device structure is based on the CIGS layer as the absorber layer, n-Si as the high conductive layer, i-In<sub>2</sub>S<sub>3</sub>, and i-ZnO as the buffer and window layers, respectively. The optimum CIGS bandgap was determined first and used to simulate and analyze the cell performance throughout the experiment. This analysis revealed that the absorber layer’s optimum bandgap value has to be 1.4 eV to achieve maximum efficiency of 22.57%. Subsequently, output solar cell parameters were analyzed as a function of CIGS layer thickness, defect density, and the operating temperature with an optimized n-Si layer. The newly modeled device has a p-CIGS/n-Si/In<sub>2</sub>S<sub>3</sub>/Al-ZnO structure. The main objective was to improve the overall cell performance while optimizing the thickness of absorber layers, defect density, bandgap, and operating temperature with the newly employed optimized n-Si layer. The increase of absorber layer thickness from 0.2 - 2 µm showed an upward trend in the cell’s performance, while the increase of defect density and operating temperature showed a downward trend in solar cell performance. This study illustrates that the proposed cell structure shows higher cell performances and can be fabricated on the lab-scale and industrial levels.展开更多
Cu films with thickness of 630-1300nm were deposited on glass substrates without heating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to 0.5, 1.0 and 1.5Pa respectively. The target voltage was...Cu films with thickness of 630-1300nm were deposited on glass substrates without heating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to 0.5, 1.0 and 1.5Pa respectively. The target voltage was fixed at 500V but the target current increased from 200 to 1150mA with Ar pressure increasing. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used to observe the structural characterization of the films. The resistivity of the films was measured using four-point probe technique. At all the Ar pressures, the Cu films have mixture crystalline orientations of [111], [200] and [220] in the direction of the film growth. The film deposited at lower pressure shows more [111] orientation while that deposited at higher pressure has more [220] orientation. The amount of larger grains in the film prepared at 0.5Pa Ar pressure is slightly less than that prepared at 1.0Pa and 1.5Pa Ar pressures. The resistivities of the films prepared at three different Ar pressures represent few differences, about 3-4 times of that of bulk material. Besides the deposition rate increases with Ar pressure because of the increase in target current. The contribution of the bombardment of energetic reflected Argon atoms to these phenomena is discussed.展开更多
Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of ion bean sputtered precursors on soda-lime glass substrate. The single phase of stannite-type structure CZTS films were obtained as revealed i...Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of ion bean sputtered precursors on soda-lime glass substrate. The single phase of stannite-type structure CZTS films were obtained as revealed in EDS and XRD analysis when the ratios of the constituents of CZTS thin films are close to stoichiometric by optimizing the conditions of precursor preparation and sulfurization. A low sheet resistivity as about 0.156 Ω·cm and a high absorption coefficient as 1×104 cm-1 were achieved in this method by Hall effect measurements and UV-VIS spectrophotometer. The optical band-gap energy of the CZTS sample is about 1.51 eV, which is very close to the optimum value for a solar-cell absorber.展开更多
CoPt thin films with various Cu contents varying from 0 vol.% to 21.5 vol.% were deposited on glass substrates by magnetron sputtering. The effects of Cu additive on the structural and magnetic properties and the orde...CoPt thin films with various Cu contents varying from 0 vol.% to 21.5 vol.% were deposited on glass substrates by magnetron sputtering. The effects of Cu additive on the structural and magnetic properties and the ordering temperature of CoPt films were investigated in detail. The results show that the Cu in CoPt films plays an important role in promoting the ordering parameter S and reducing the ordering temperature of CoPt films. A nearly perfect (001) texture was obtained in a CoPt film doped with 15.3 vol.% Cu. Besides, the preferred orientation of the CoPt film can be changed by annealing temperature. The perpendicular growth of the CoPt film is favored at a high annealing temperature.展开更多
ZnO/Cu/ZnO transparent conductive thin films were prepared by RF sputtering deposition of ZnO target and DC sputtering deposition of Cu target on n-type (001) Si and glass substrates at room temperature. The mor- ph...ZnO/Cu/ZnO transparent conductive thin films were prepared by RF sputtering deposition of ZnO target and DC sputtering deposition of Cu target on n-type (001) Si and glass substrates at room temperature. The mor- phology, structure, optical, and electrical properties of the multilayer films were characterized by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), UV/Vis spectrophotometer, and Hall effect mea- surement system. The influence of Cu layer thickness and the oxygen pressure in sputtering atmosphere on the film properties were studied. ZnO/Cu/ZnO transparent conduc- tive film fabricated in pure Ar atmosphere with 10 nm Cu layer thickness has the best performance: resistivity of 2.3 × 10^-4 Ω.cm, carrier concentration of 6.44 × 10^16 cm-2, mobility of 4.51 cm2.(V.s)-1, and acceptable aver- age transmittance of 80 % in the visible range. The trans- mittance and conductivity of the films fabricated with oxygen are lower than those of the films fabricated without oxygen, which indicates that oxygen atmosphere does not improve the optical and electrical properties of ZnO/Cu/ ZnO films.展开更多
Metallic copper(Cu) films were deposited on a Si (100) substrate by unbalanced magnetron sputtering enhanced by radio-frequency plasma and external magnetic field confinement. The morphology and structure of the f...Metallic copper(Cu) films were deposited on a Si (100) substrate by unbalanced magnetron sputtering enhanced by radio-frequency plasma and external magnetic field confinement. The morphology and structure of the films were examined by scanning electron microscopy (SEM), atomic force microscope (AFM) and X-ray diffraction (XRD). The surface average roughness of the deposited Cu films was characterized by AFM data and resistivity was measured by a four-point probe. The results show that the Cu films deposited with radio-frequency discharge enhanced ionization and external magnetic field confinement have a smooth surface, low surface roughness and low resistivity. The reasons may be that the radio-frequency discharge and external magnetic field enhance the plasma density, which further improves the ion bombardment effect under the same bias voltage conditions. Ion bombardment can obviously influence the growth features and characteristics of the deposited Cu films.展开更多
The compact oxide on the surface of SiCp/Al metal matrix composite (SiCp/Al MMC) greatly depends on the property of the joint. Inlaid sputtering target was applied to etch the oxide completely on the bonding surface...The compact oxide on the surface of SiCp/Al metal matrix composite (SiCp/Al MMC) greatly depends on the property of the joint. Inlaid sputtering target was applied to etch the oxide completely on the bonding surface of SiCp/Al MMC by plasma erosion. Cu/Ni/Cu film of 5μm in thickness was prepared by magnetron sputtering method on the clean bonding surface in the same vacuum chamber, which was acted as an interlayer in transient liquid phase (TLP) bonding process. Compared with the same thickness of single Cu foil and Ni foil interlayer, the shear strength of 200 MPa was obtained using Cu/Ni/Cu film interlayer during TLP bonding, which was 89.7% that of base metal. In addition, homogenization of the bonding region and no particle segregation in interfacial region were found by analysis of the joint microstructure. Scanning electron microscopy (SEM) was used to observe the micrograph of the joint interface. The result shows that a homogenous microstructure of joint was achieved, which is similar with that of based metal.展开更多
Thin films of copper indium gallium selenide Cu(In,Ga)Se2 (CIGS) were prepared by sequential elemental layer deposition in vacuum at room temperature. The as-deposited films were heated in vacuum for compound form...Thin films of copper indium gallium selenide Cu(In,Ga)Se2 (CIGS) were prepared by sequential elemental layer deposition in vacuum at room temperature. The as-deposited films were heated in vacuum for compound formation, and were studied at temperature as high as 1250℃ for the first time. These films were concurrently studied for their structural properties by X-ray diffraction (XRD) technique. The XRD analyses include phase transition studies, grain size variation and microstrain measurements with the reaction temperature and time.It has been observed that there are three distinct regions of variation in all these parameters. These regions belong to three temperature regimes: 〈450℃, 450-950℃, and 〉950℃. It is also seen that the compound formation starts at 250℃, with ternary phases appearing at 350℃ or above. Whereas, there is another phase shift at 950℃ without any preference to the quaternary compound.展开更多
The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the...The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the studies the alkali metals were treated as dopants. Several recent studies have showed that the alkali metals may not only act as dopants but also form secondary phases in the absorber layer or on the surfaces of the films. Using the first-principles calculations, we screened out the most probable secondary phases of Na and K in CIGS and CZTSSe, and studied their electronic structures and optical properties. We found that all these alkali chalcogenide compounds have larger band gaps and lower VBM levels than CIGS and CZTSSe, because the existence of strong p-d coupling in CIS and CZTS pushes the valence band maximum (VBM) level up and reduces the band-gaps, while there is no such p-d coupling in these alkali chalcogenides. This band alignment repels the photo-generated holes from the secondary phases and prevents the electron-hole recombination. Moreover, the study on the optical properties of the secondary phases showed that the absorption coefficients of these alkali chalcogenides are much lower than those of CIGS and CZTSSe in the energy range of 0-3.4eV, which means that the alkali chalcogenides may not influence the absorption of solar light. Since the alkali metal dopants can passivate the grain boundaries and increase the hole carrier concentration, and meanwhile their related secondary phases have innocuous effect on the optical absorption and band alignment, we can understand why the alkali metal dopants can improve the CIGS and CZTSSe solar cell performance.展开更多
We improved the photovoltaic properties of Cu_2O-based heterojunction solar cells using n-type oxide semiconductor thin films prepared by a sputtering apparatus with our newly developed multi-chamber system. We also o...We improved the photovoltaic properties of Cu_2O-based heterojunction solar cells using n-type oxide semiconductor thin films prepared by a sputtering apparatus with our newly developed multi-chamber system. We also obtained the highest efficiency(3.21%) in an AZO/p-Cu_2O heterojunction solar cell prepared with optimized pre-sputtering conditions using our newly developed multi-chamber sputtering system. This value achieves the same or higher characteristics than AZO/Cu_2O solar cells with a similar structure prepared by the pulse laser deposition method.展开更多
文摘We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the 1D-Solar Cell Capacitance Simulator (1D-SCAPS) software program. The new device structure is based on the CIGS layer as the absorber layer, n-Si as the high conductive layer, i-In<sub>2</sub>S<sub>3</sub>, and i-ZnO as the buffer and window layers, respectively. The optimum CIGS bandgap was determined first and used to simulate and analyze the cell performance throughout the experiment. This analysis revealed that the absorber layer’s optimum bandgap value has to be 1.4 eV to achieve maximum efficiency of 22.57%. Subsequently, output solar cell parameters were analyzed as a function of CIGS layer thickness, defect density, and the operating temperature with an optimized n-Si layer. The newly modeled device has a p-CIGS/n-Si/In<sub>2</sub>S<sub>3</sub>/Al-ZnO structure. The main objective was to improve the overall cell performance while optimizing the thickness of absorber layers, defect density, bandgap, and operating temperature with the newly employed optimized n-Si layer. The increase of absorber layer thickness from 0.2 - 2 µm showed an upward trend in the cell’s performance, while the increase of defect density and operating temperature showed a downward trend in solar cell performance. This study illustrates that the proposed cell structure shows higher cell performances and can be fabricated on the lab-scale and industrial levels.
基金The authors would like to thank Prof. Y.B. Wang and Mr. S. Liang of the Department of Material Physics for supporting AFM observations. The authors also would like to thank Ms. J.P. He of the State Key Laboratory for Advanced Metals and Materials for sup
文摘Cu films with thickness of 630-1300nm were deposited on glass substrates without heating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to 0.5, 1.0 and 1.5Pa respectively. The target voltage was fixed at 500V but the target current increased from 200 to 1150mA with Ar pressure increasing. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used to observe the structural characterization of the films. The resistivity of the films was measured using four-point probe technique. At all the Ar pressures, the Cu films have mixture crystalline orientations of [111], [200] and [220] in the direction of the film growth. The film deposited at lower pressure shows more [111] orientation while that deposited at higher pressure has more [220] orientation. The amount of larger grains in the film prepared at 0.5Pa Ar pressure is slightly less than that prepared at 1.0Pa and 1.5Pa Ar pressures. The resistivities of the films prepared at three different Ar pressures represent few differences, about 3-4 times of that of bulk material. Besides the deposition rate increases with Ar pressure because of the increase in target current. The contribution of the bombardment of energetic reflected Argon atoms to these phenomena is discussed.
基金This work was financially supported by the National Natural Science Foundation (No.10574106), the Science & Technology Plan of Guangdong Province (No.2003C105005) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Chinese State Education Ministry (No.(2004)176).
文摘Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of ion bean sputtered precursors on soda-lime glass substrate. The single phase of stannite-type structure CZTS films were obtained as revealed in EDS and XRD analysis when the ratios of the constituents of CZTS thin films are close to stoichiometric by optimizing the conditions of precursor preparation and sulfurization. A low sheet resistivity as about 0.156 Ω·cm and a high absorption coefficient as 1×104 cm-1 were achieved in this method by Hall effect measurements and UV-VIS spectrophotometer. The optical band-gap energy of the CZTS sample is about 1.51 eV, which is very close to the optimum value for a solar-cell absorber.
基金supported by the Natural Science Foundation of China (No. 60776008)the Program for New Century Excellent Talents in Universities, China (No. NECT-07-0527)the Key Project of Chinese Ministry of Education (No. 207020)
文摘CoPt thin films with various Cu contents varying from 0 vol.% to 21.5 vol.% were deposited on glass substrates by magnetron sputtering. The effects of Cu additive on the structural and magnetic properties and the ordering temperature of CoPt films were investigated in detail. The results show that the Cu in CoPt films plays an important role in promoting the ordering parameter S and reducing the ordering temperature of CoPt films. A nearly perfect (001) texture was obtained in a CoPt film doped with 15.3 vol.% Cu. Besides, the preferred orientation of the CoPt film can be changed by annealing temperature. The perpendicular growth of the CoPt film is favored at a high annealing temperature.
基金financially supported by the National Nature Science Foundation of China (No. 21071098)the Project of International Cooperation of the Ministry of Science and Technology of China (No. 2011DFA50530)the Nanotechnology Program of Shanghai Science & Technology Committee (No. 12nm0504800)
文摘ZnO/Cu/ZnO transparent conductive thin films were prepared by RF sputtering deposition of ZnO target and DC sputtering deposition of Cu target on n-type (001) Si and glass substrates at room temperature. The mor- phology, structure, optical, and electrical properties of the multilayer films were characterized by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), UV/Vis spectrophotometer, and Hall effect mea- surement system. The influence of Cu layer thickness and the oxygen pressure in sputtering atmosphere on the film properties were studied. ZnO/Cu/ZnO transparent conduc- tive film fabricated in pure Ar atmosphere with 10 nm Cu layer thickness has the best performance: resistivity of 2.3 × 10^-4 Ω.cm, carrier concentration of 6.44 × 10^16 cm-2, mobility of 4.51 cm2.(V.s)-1, and acceptable aver- age transmittance of 80 % in the visible range. The trans- mittance and conductivity of the films fabricated with oxygen are lower than those of the films fabricated without oxygen, which indicates that oxygen atmosphere does not improve the optical and electrical properties of ZnO/Cu/ ZnO films.
基金National Natural Science Foundation of China(Nos.50277003,10505005)
文摘Metallic copper(Cu) films were deposited on a Si (100) substrate by unbalanced magnetron sputtering enhanced by radio-frequency plasma and external magnetic field confinement. The morphology and structure of the films were examined by scanning electron microscopy (SEM), atomic force microscope (AFM) and X-ray diffraction (XRD). The surface average roughness of the deposited Cu films was characterized by AFM data and resistivity was measured by a four-point probe. The results show that the Cu films deposited with radio-frequency discharge enhanced ionization and external magnetic field confinement have a smooth surface, low surface roughness and low resistivity. The reasons may be that the radio-frequency discharge and external magnetic field enhance the plasma density, which further improves the ion bombardment effect under the same bias voltage conditions. Ion bombardment can obviously influence the growth features and characteristics of the deposited Cu films.
基金The work was financially supported by the National Natural Science Foundation of China under grant Nos. 50275076 and 50075039.
文摘The compact oxide on the surface of SiCp/Al metal matrix composite (SiCp/Al MMC) greatly depends on the property of the joint. Inlaid sputtering target was applied to etch the oxide completely on the bonding surface of SiCp/Al MMC by plasma erosion. Cu/Ni/Cu film of 5μm in thickness was prepared by magnetron sputtering method on the clean bonding surface in the same vacuum chamber, which was acted as an interlayer in transient liquid phase (TLP) bonding process. Compared with the same thickness of single Cu foil and Ni foil interlayer, the shear strength of 200 MPa was obtained using Cu/Ni/Cu film interlayer during TLP bonding, which was 89.7% that of base metal. In addition, homogenization of the bonding region and no particle segregation in interfacial region were found by analysis of the joint microstructure. Scanning electron microscopy (SEM) was used to observe the micrograph of the joint interface. The result shows that a homogenous microstructure of joint was achieved, which is similar with that of based metal.
文摘Thin films of copper indium gallium selenide Cu(In,Ga)Se2 (CIGS) were prepared by sequential elemental layer deposition in vacuum at room temperature. The as-deposited films were heated in vacuum for compound formation, and were studied at temperature as high as 1250℃ for the first time. These films were concurrently studied for their structural properties by X-ray diffraction (XRD) technique. The XRD analyses include phase transition studies, grain size variation and microstrain measurements with the reaction temperature and time.It has been observed that there are three distinct regions of variation in all these parameters. These regions belong to three temperature regimes: 〈450℃, 450-950℃, and 〉950℃. It is also seen that the compound formation starts at 250℃, with ternary phases appearing at 350℃ or above. Whereas, there is another phase shift at 950℃ without any preference to the quaternary compound.
基金supported by the National Natural Science Foundation of China(NSFC)under grant nos.61574059 and 61722402the National Key Research and Development Program of China(2016YFB0700700)+1 种基金Shu-Guang program(15SG20)CC of ECNU
文摘The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the studies the alkali metals were treated as dopants. Several recent studies have showed that the alkali metals may not only act as dopants but also form secondary phases in the absorber layer or on the surfaces of the films. Using the first-principles calculations, we screened out the most probable secondary phases of Na and K in CIGS and CZTSSe, and studied their electronic structures and optical properties. We found that all these alkali chalcogenide compounds have larger band gaps and lower VBM levels than CIGS and CZTSSe, because the existence of strong p-d coupling in CIS and CZTS pushes the valence band maximum (VBM) level up and reduces the band-gaps, while there is no such p-d coupling in these alkali chalcogenides. This band alignment repels the photo-generated holes from the secondary phases and prevents the electron-hole recombination. Moreover, the study on the optical properties of the secondary phases showed that the absorption coefficients of these alkali chalcogenides are much lower than those of CIGS and CZTSSe in the energy range of 0-3.4eV, which means that the alkali chalcogenides may not influence the absorption of solar light. Since the alkali metal dopants can passivate the grain boundaries and increase the hole carrier concentration, and meanwhile their related secondary phases have innocuous effect on the optical absorption and band alignment, we can understand why the alkali metal dopants can improve the CIGS and CZTSSe solar cell performance.
基金partly supported by Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No.15K04723)
文摘We improved the photovoltaic properties of Cu_2O-based heterojunction solar cells using n-type oxide semiconductor thin films prepared by a sputtering apparatus with our newly developed multi-chamber system. We also obtained the highest efficiency(3.21%) in an AZO/p-Cu_2O heterojunction solar cell prepared with optimized pre-sputtering conditions using our newly developed multi-chamber sputtering system. This value achieves the same or higher characteristics than AZO/Cu_2O solar cells with a similar structure prepared by the pulse laser deposition method.