期刊文献+
共找到132,160篇文章
< 1 2 250 >
每页显示 20 50 100
A Mssbauer Study on the Mechanically Alloyed Cu-Sn Alloys
1
作者 Yuanzheng YANG Youlan ZHU and Qiaoshen LI(Dept. of Materials Science and Engineering, Guangdong University of Technology, Guangzhou 510090, China)Xueming MA and Yuanda DONG(Dept. of Materials Science and Engineering, Shanghai University, Shanghai 200072, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第6期551-554,共4页
Nanocrystalline E and η electron compounds and supersaturated solid solution of the Cu-Sn system have been prepared by mechanical alloying of elemental Cu and Sn powders. The atomie alloying and microstructure of the... Nanocrystalline E and η electron compounds and supersaturated solid solution of the Cu-Sn system have been prepared by mechanical alloying of elemental Cu and Sn powders. The atomie alloying and microstructure of the resultant alloys have been investigated by XRD, DSC and 119Sn Mossbauer spectroscopy. A little amount of SnO2 was detected by Mossbauer spectroscopy, although no trace of diffiaction peaks occurred in the XRD pattern. Thus the spectra for all the milled samples should be fitted using two quadrupole-splitting doublets: one corre sponding to SnO2, the other corresponding to the resultant alloys. The composition dependence of the hyperfine parameters has been eXtensively discussed and explained well with respect to oxidation, sudece effect resulting from grain refinement, coordination environment asymmetry and distortion caused or/and induced by mechanical alloying. 展开更多
关键词 SN A M ssbauer Study on the Mechanically Alloyed cu-sn alloys CU
下载PDF
Liquid State Undercoolability and Crystal Growth Kinetics of Ternary Ni-Cu-Sn Alloys 被引量:2
2
作者 闫娜 胡亮 +2 位作者 阮莹 王伟丽 魏炳波 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期141-144,共4页
The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of ... The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of 304 K (0.18TL ) and 286K (0.17TL ) are achieved and the dendritic growth velocities attain 39.8 and 25.1 m/s, respectively. The transition of morphology from coarse dendrite into equiaxed structure occurs and the grain size of the a (Ni) phase decreases remarkably when the undercooling increases. Both the lattice constant and microhardness increase obviously with the enhancement of undercooling. The enrichment of Cu and Sn solute contents reduces the dendritic growth velocity, while enhances the lattice constant and microhardness of a (Ni) phase. 展开更多
关键词 SN of CU Liquid State Undercoolability and Crystal Growth Kinetics of Ternary Ni-cu-sn alloys NI
下载PDF
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:1
3
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
4
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
Cu-Sn、Ni-Cr、Co烧结助剂对Ni_(3)Al基金刚石复合材料性能的影响
5
作者 卢家锋 张凤林 陈晓昀 《热加工工艺》 北大核心 2024年第15期44-48,共5页
采用真空热压法制备了Ni_(3)Al基金刚石复合材料,研究了不同烧结助剂对复合材料力学性能和微观结构的影响,并对Ni_(3)Al基金刚石钻头的钻孔性能进行了测试。结果表明,在添加0~30vol%的Cu-Sn、Ni-Cr、Co烧结助剂后,Ni_(3)Al基金刚石刀头... 采用真空热压法制备了Ni_(3)Al基金刚石复合材料,研究了不同烧结助剂对复合材料力学性能和微观结构的影响,并对Ni_(3)Al基金刚石钻头的钻孔性能进行了测试。结果表明,在添加0~30vol%的Cu-Sn、Ni-Cr、Co烧结助剂后,Ni_(3)Al基金刚石刀头的致密度、抗弯强度、硬度得到提高。Ni3Al基金刚石复合材料的抗弯强度随着Ni-Cr、Co烧结助剂含量的增加而提高。Cu-Sn、Ni-Cr烧结助剂中的Cr元素在金刚石的表面出现了富集现象。将添加Cu-Sn、Ni-Cr烧结助剂的Ni_(3)Al基金刚石复合材料制备成工具进行钻削测试,发现Ni_(3)Al基金刚石复合材料的失效形式可以分为微破碎、磨耗、宏观破碎3种形式,钻削试验中并没有发现整颗金刚石脱落的现象,表明Ni_(3)Al基对金刚石的把持力较大,强度较高。 展开更多
关键词 Ni_(3)Al cu-sn NI-CR 金刚石 复合材料 磨损
下载PDF
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:1
6
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion 被引量:1
7
作者 Xiaoshuang Li Dmitry Sukhomlinov Zaiqing Que 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期118-128,共11页
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond... Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment. 展开更多
关键词 multi-material additive manufacturing laser-based powder bed fusion thermal diffusivity dissimilar metals copper alloy
下载PDF
New insights on the high-corrosion resistance of UHP Mg-Ge alloys tested in a simulated physiological environment 被引量:1
8
作者 Ting Liu Xingrui Chen +4 位作者 Jeffrey Venezuela Yuan Wang Zhiming Shi Wenyi Chen Matthew Dargusch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1026-1044,共19页
UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP M... UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities. 展开更多
关键词 UHP Mg-Ge alloy Cathodic kinetics suppression Biodegradable metals In vitro corrosion Magnesium corrosion.
下载PDF
修正Zerilli-Armstrong模型预测Cu-Sn合金的高温流变应力
9
作者 李清阳 蔡军 +1 位作者 李冲冲 鱼祎雯 《材料热处理学报》 CAS CSCD 北大核心 2024年第5期180-185,共6页
在变形温度为823~973 K,应变速率为0.001~1 s^(-1)及真应变为0.9的条件下,采用Gleeble-3500热模拟实验机对Cu-Sn合金进行了热压缩实验,分析了其热变形行为。基于Cu-Sn合金的热压缩实验结果,利用多元线性回归建立了描述合金热变形特征的... 在变形温度为823~973 K,应变速率为0.001~1 s^(-1)及真应变为0.9的条件下,采用Gleeble-3500热模拟实验机对Cu-Sn合金进行了热压缩实验,分析了其热变形行为。基于Cu-Sn合金的热压缩实验结果,利用多元线性回归建立了描述合金热变形特征的修正Zerilli-Armstrong模型。引入了相关系数(R)和平均相对误差(AARE)对模型的精度进行评估。结果表明:Cu-Sn合金的流动应力受变形温度和应变速率的影响显著,流动应力随应变速率的增大和变形温度的降低而增大,流动应力呈现锯齿状抖动是加工硬化与流动软化之间竞争的结果;修正Zerilli-Armstrong模型的预测应力值与实验应力值的R和AARE值分别为0.986和7.12%,表明该模型的精度较高,能够准确地描述Cu-Sn合金的高温流动行为。 展开更多
关键词 cu-sn合金 热压缩实验 本构方程 热变形行为
下载PDF
Review on laser directed energy deposited aluminum alloys 被引量:1
10
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
Ag-Cu-Sn-Cr真空钎焊金刚石/铜合金接头微观组织与剪切强度 被引量:1
11
作者 高峰 邢秀宽 +1 位作者 王国强 钟志宏 《电焊机》 2024年第2期58-63,76,共7页
采用Ag-Cu-Sn-Cr活性钎料,将金刚石膜片与铜合金进行了钎焊连接。研究分析了钎焊温度对连接接头微观组织及接头力学性能的影响。结果表明,钎料与金刚石的界面结合良好,钎料中的Cr与金刚石发生反应并在界面处形成Cr_(3)C_(2)碳化物。钎... 采用Ag-Cu-Sn-Cr活性钎料,将金刚石膜片与铜合金进行了钎焊连接。研究分析了钎焊温度对连接接头微观组织及接头力学性能的影响。结果表明,钎料与金刚石的界面结合良好,钎料中的Cr与金刚石发生反应并在界面处形成Cr_(3)C_(2)碳化物。钎缝中心主要由Cu基固溶体、Ag基固溶体、Cu_(3)Sn金属间化合物和Cr组成。当钎焊温度在780~840℃范围时,随着温度的提高,界面反应层逐渐增厚,钎焊接头剪切强度先升高后降低。在最佳的钎焊温度820℃和保温时间15 min下,接头剪切强度达到最高值147 MPa。通过优化钎焊温度,成功实现了金刚石膜片与铜合金的可靠连接。该方法可为实际工业生产中硬脆材料与金属的连接提供新的思路与技术途径。 展开更多
关键词 金刚石 钎焊 铜合金 微观组织 力学性能
下载PDF
Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys
12
作者 Yong Wang Wei Wang +1 位作者 Joo Hyun Park Wangzhong Mu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1639-1650,共12页
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5... Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation. 展开更多
关键词 high-entropy alloy non-metallic inclusion AGGLOMERATION thermodynamics ALLOYING
下载PDF
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
13
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 Al-Cu alloy pre-hardened alloy natural aging mechanical properties MICROSTRUCTURE
下载PDF
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization
14
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys HIGH-PERFORMANCE Alloy design Machine learning Bayesian optimization
下载PDF
Recent innovations in laser additive manufacturing of titanium alloys
15
作者 Jinlong Su Fulin Jiang +8 位作者 Jie Teng Lequn Chen Ming Yan Guillermo Requena Lai-Chang Zhang Y Morris Wang Ilya V Okulov Hongmei Zhu Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期2-37,共36页
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite... Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted. 展开更多
关键词 additive manufacturing titanium alloys auxiliary field machine learning aerospace materials lightweight materials novel alloys
下载PDF
High-entropy alloys in thermoelectric application:A selective review
16
作者 任凯 霍文燚 +3 位作者 陈帅 程渊 王彪 张刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期1-11,共11页
Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the ... Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy. 展开更多
关键词 high-entropy alloys thermoelectric materials thermal conduction
下载PDF
Enhancing the mechanical properties of casting eutectic high -entropy alloys via W addition
17
作者 Xu Yang Dezhi Chen +3 位作者 Li Feng Gang Qin Shiping Wu Ruirun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1364-1372,共9页
The effect of W element on the microstructure evolution and mechanical properties of Al_(1.25)CoCrFeNi3 eutectic high-entropy alloy and Al_(1.25)CoCrFeNi_(3-x)W_(x)(x=0,0.05,0.1,0.3,and 0.5;atomic ratio)high-entropy a... The effect of W element on the microstructure evolution and mechanical properties of Al_(1.25)CoCrFeNi3 eutectic high-entropy alloy and Al_(1.25)CoCrFeNi_(3-x)W_(x)(x=0,0.05,0.1,0.3,and 0.5;atomic ratio)high-entropy alloys(HEAs)were explored.Results show that the Al_(1.25)CoCrFeNi_(3-x)W_(x) HEAs are composed of face-centered cubic and body-centered cubic(BCC)phases.As W content increases,the microstructure changes from eutectic to dendritic.The addition of W lowers the nucleation barrier of the BCC phase,decreases the valence electron concentration of the HEAs,and replaces Al in the BCC phase,thus facilitating the nucleation of the BCC phase.Tensile results show that the addition of W greatly improves the mechanical properties,and solid-solution,heterogeneous-interface,and second-phase strengthening are the main strengthening mechanisms.The yield strength,tensile strength,and elongation of the Al_(1.25)CoCrFeNi2.95W0.05 HEA are 601.44 MPa,1132.26 MPa,and 15.94%,respectively,realizing a balance between strength and plasti-city.The fracture mode of the Al_(1.25)CoCrFeNi_(3-x)W_(x) HEAs is ductile–brittle mixed fracture,and the crack propagates and initiates in the BCC phase.The eutectic lamellar structure impedes crack propagation and maintains plasticity. 展开更多
关键词 high-entropy alloy microstructure mechanical property fracture behavior
下载PDF
Enhanced superelasticity and reversible elastocaloric effect in nano-grained NiTi alloys with low stress hysteresis
18
作者 周敏 王维 +2 位作者 苏浩健 胡忠军 李来风 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期557-562,共6页
Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect... Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material. 展开更多
关键词 elastocaloric effect stress hysteresis SUPERELASTICITY NiTi alloy
下载PDF
Microstructures and Properties of Biomedical Mg-Zn-Sn-Zr Rolled Alloys
19
作者 周生刚 ZHANG Daxin +5 位作者 XU Yang DUAN Jihao LI Tao LIU Junfeng WANG Peng 曹勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期766-773,共8页
The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were inve... The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were investigated.The microstructure of the alloy was observed and analyzed by scanning electron microscope,and the tensile test was carried out by universal tensile machine.The corrosion resistance of the alloy in Hank's solution was studied by hydrogen evolution experiment and electrochemical test,and the biocompatibility of the alloy was tested by L929 cells.The results show that Mg-2Zn-1.5Sn-xZr alloy has excellent mechanical properties.The elongation of Mg-2Zn-1.5Sn-xZr alloy decreases with the increase of Zr content,but the tensile strength first increases and then decreases with the increase of Zr concentration.When the Zr content is 0.8 wt%,the maximum tensile strength of the alloy is 235 MPa.The results of hydrogen evolution experiment and electrochemical analysis show that the corrosion resistance of the alloy is the best when the Zr content is 0.8 wt%,and all the five alloys have high biocompatibility.In conclusion,the rolled alloy has good properties and has broad application prospects in the field of biomaterials. 展开更多
关键词 magnesium alloy corrosion performance mechanical properties BIOCOMPATIBILITY
下载PDF
Predict the evolution of mechanical property of Al-Li alloys in a marine environment
20
作者 Wei Li Lin Xiang +6 位作者 Guang Wu Hongli Si Jinyan Chen Yiming Jin Yan Su Jianquan Tao Chunyang Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期557-566,共10页
The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learni... The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learning(ML)-based prediction method to study the evolution of the mechanical properties of Al-Li alloys in the marine environment.We obtained the mechanical properties of Al-Li alloy samples under uniaxial tensile deformation at different exposure times through Marine exposure experiments.We obtained the strain evolution by digital image correlation(DIC).The strain field images are voxelized using 2D-Convolutional Neural Networks(CNN)autoencoders as input data for Long Short-Term Memory(LSTM)neural networks.Then,the output data of LSTM neural networks combined with corrosion features were input into the Back Propagation(BP)neural network to predict the mechanical properties of Al-Li alloys.The main conclusions are as follows:1.The variation law of mechanical properties of2297-T8 in the Marine atmosphere is revealed.With the increase in outdoor exposure test time,the tensile elastic model of 2297-T8 changes slowly,within 10%,and the tensile yield stress changes significantly,with a maximum attenuation of 23.6%.2.The prediction model can predict the strain evolution and mechanical response simultaneously with an error of less than 5%.3.This study shows that a CNN/LSTM system based on machine learning can be built to capture the corrosion characteristics of Marine exposure experiments.The results show that the relationship between corrosion characteristics and mechanical response can be predicted without considering the microstructure evolution of metal materials. 展开更多
关键词 Marine environment Al-Li alloy Machine learning CORROSION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部