Negative thermal expansion (NTE) ZrW2O8 powders were prepared by step-by-step solid-state reaction with ZrO2 and WO3 powders. The coefficient of thermal expansion (CTE) of the as-prepared ZrW208 was around -5.08...Negative thermal expansion (NTE) ZrW2O8 powders were prepared by step-by-step solid-state reaction with ZrO2 and WO3 powders. The coefficient of thermal expansion (CTE) of the as-prepared ZrW208 was around -5.08×10^-6 K^-1 at 20-700℃. Different amounts of ZrW208 powders were added in BTDA-ODA polyamic acid to form polyimide/ZrW2O8 composites (PI/ZrW2O8). With the increment of ZrW2O8, experimental results show that ZrW2O8 powders can significantly enhance the thermal stability of the composites, and reduce the thermal expansion. A 50 wt pct ZrW2O8 addition can give rise to a 31% reduction of CTE. It is suggested that the PI/ZrW2O8 composites have potential applications in high performance microelectronic devices.展开更多
With the booming development of portable and wearable electronic devices, flexible energy storage devices have attracted great attention. Among various energy storage devices, aqueous zinc ion batteries(ZIBs) are one ...With the booming development of portable and wearable electronic devices, flexible energy storage devices have attracted great attention. Among various energy storage devices, aqueous zinc ion batteries(ZIBs) are one of the promising candidates due to their low cost, good safety, high energy and power densities. However, the conventional cathodes of aqueous ZIBs were often prepared by mixing active materials with binders and conductive additives and then coating them onto current collectors. The resultant cathodes often suffer from unsatisfied flexibility. Herein, we fabricated freestanding reduced graphene oxide/NaV_3O_8·1.5H_2O(RGO/NVO) composite films with interlinked multilayered architecture by a vacuum filtrating process. Such composite films exhibit excellent mechanical property and high electronic conductivity. Owing to unique architecture, they display a high capacity of 410 mA h g^(-1) and excellent cycling performance up to 2000 cycles with a high capacity retention of 94%. Moreover, RGO/NVO composite films can directly serve as the cathodes of flexible aqueous ZIBs. As a proof of concept,flexible ZIBs were assembled based on the composite films. Impressively, they exhibit stable performance at different bending states, demonstrating great potential application in flexible energy storage devices.展开更多
基金supported by the National NaturalScience Foundation of China(No.50372027)the Natural Science Foundation of Jiangsu Province(No.BK2003404)
文摘Negative thermal expansion (NTE) ZrW2O8 powders were prepared by step-by-step solid-state reaction with ZrO2 and WO3 powders. The coefficient of thermal expansion (CTE) of the as-prepared ZrW208 was around -5.08×10^-6 K^-1 at 20-700℃. Different amounts of ZrW208 powders were added in BTDA-ODA polyamic acid to form polyimide/ZrW2O8 composites (PI/ZrW2O8). With the increment of ZrW2O8, experimental results show that ZrW2O8 powders can significantly enhance the thermal stability of the composites, and reduce the thermal expansion. A 50 wt pct ZrW2O8 addition can give rise to a 31% reduction of CTE. It is suggested that the PI/ZrW2O8 composites have potential applications in high performance microelectronic devices.
基金supported by the National Natural Science Foundation of China(21573116,51822205,21875121,51602218)Ministry of Science and Technology of China(2017YFA0206701)+3 种基金Ministry of Education of China(B12015)Tianjin Basic and High-Tech Development(16PTSYJC00030)the Fundamental Research Funds for the Central Universitiesthe Young Thousand Talents Program
文摘With the booming development of portable and wearable electronic devices, flexible energy storage devices have attracted great attention. Among various energy storage devices, aqueous zinc ion batteries(ZIBs) are one of the promising candidates due to their low cost, good safety, high energy and power densities. However, the conventional cathodes of aqueous ZIBs were often prepared by mixing active materials with binders and conductive additives and then coating them onto current collectors. The resultant cathodes often suffer from unsatisfied flexibility. Herein, we fabricated freestanding reduced graphene oxide/NaV_3O_8·1.5H_2O(RGO/NVO) composite films with interlinked multilayered architecture by a vacuum filtrating process. Such composite films exhibit excellent mechanical property and high electronic conductivity. Owing to unique architecture, they display a high capacity of 410 mA h g^(-1) and excellent cycling performance up to 2000 cycles with a high capacity retention of 94%. Moreover, RGO/NVO composite films can directly serve as the cathodes of flexible aqueous ZIBs. As a proof of concept,flexible ZIBs were assembled based on the composite films. Impressively, they exhibit stable performance at different bending states, demonstrating great potential application in flexible energy storage devices.