The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)...The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)3 and Cu(OH)2 were prepared in the microemulsion of dodecylbenzenesulfonic acid sodium(S)/n-butanol(A)/toluene(O)/water with V(A)/V(O) = 0.25 and W(A)/W(S) = 1.50. This catalyst was characterized by particle size analysis, XRD and TG. The results of particle size analysis showed that Fe(OH)3 particles with a mean size of 17.1 nm and Cu(OH)2 particles with an average size of 6.65 um were obtained. TG analysis and XRD patterns suggested that 673 K is the optimal calcination temperature. CO hydrogenation produced C+OH with a high selectivity above 58 wt% by using the ultrafine particles as catalyst, and the total alcohol yield of 0.250 g·ml^-1 ·h^-1 was obtained when the contents of Al2O3 and K were 88.61 wt% and 1.60 wt%, respectively.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.展开更多
Various strategies,including controls of morphology,oxidation state,defect,and doping,have been developed to improve the performance of Cu-based catalysts for CO_(2) reduction reaction(CO_(2)RR),generating a large amo...Various strategies,including controls of morphology,oxidation state,defect,and doping,have been developed to improve the performance of Cu-based catalysts for CO_(2) reduction reaction(CO_(2)RR),generating a large amount of data.However,a unified understanding of underlying mechanism for further optimization is still lacking.In this work,combining first-principles calculations and machine learning(ML)techniques,we elucidate critical factors influencing the catalytic properties,taking Cu-based single atom alloys(SAAs)as examples.Our method relies on high-throughput calculations of 2669 CO adsorption configurations on 43 types of Cu-based SAAs with various surfaces.Extensive ML analyses reveal that low generalized coordination numbers and valence electron number are key features to determine catalytic performance.Applying our ML model with cross-group learning scheme,we demonstrate the model generalizes well between Cu-based SAAs with different alloying elements.Further,electronic structure calculations suggest surface negative center could enhance CO adsorption by back donating electrons to antibonding orbitals of CO.Finally,several SAAs,including PCu,AgCu,GaCu,ZnCu,SnCu,GeCu,InCu,and SiCu,are identified as promising CO_(2)RR catalysts.Our work provides a paradigm for the rational design and fast screening of SAAs for various electrocatalytic reactions.展开更多
In the conversion process of syngas-to-C_(2)species,the OH species are inevitably produced accompanying the production of key intermediates CH_(x)(x=1-3),traditionally,the function of surface OH species is generally a...In the conversion process of syngas-to-C_(2)species,the OH species are inevitably produced accompanying the production of key intermediates CH_(x)(x=1-3),traditionally,the function of surface OH species is generally accepted as the hydrogenating reactive species.This work for the first time proposed and confirmed the assisted catalytic mechanism of surface OH species that performed as the promoter for syngas-to-C_(2)species on Cu-based catalysts.DFT and microkinetic modeling results reveal that the produced OH species accompanying the intermediates CH_(x)production on the MCu(M=Co,Fe,Rh)catalysts can stably exist to form OH/MCu catalysts,on which the presence of surface OH species as the promoter not only presented better activity and selectivity toward CH_(x)(x=1-3)compared to MCu catalysts,but also significantly suppressed CH_(3)OH production,providing enough CH_(x)sources to favor the production of C_(2)hydrocarbons and oxygenates.Correspondingly,the electronic properties analysis revealed the essential relationship between the electronic feature of OH/MCu catalysts and catalytic performance,attributing to the unique electronic micro-environment of the catalysts under the interaction of surface OH species.This new mechanism is called as OH-assisted catalytic mechanism,which may be applied in the reaction systems related to the generation of OH species.展开更多
The effects of the metal ratio of NiCu catalysts on the low-temperature hydrodeoxygenation(HDO)of anisole were assessed on a neutral SiO_(2) and an acidicγ-Al_(2)O_(3) support.The activity of SiO_(2)-supported cataly...The effects of the metal ratio of NiCu catalysts on the low-temperature hydrodeoxygenation(HDO)of anisole were assessed on a neutral SiO_(2) and an acidicγ-Al_(2)O_(3) support.The activity of SiO_(2)-supported catalysts increases with the Ni content in the NiCu phase,related to Ni’s hydrogenation capacity.In contrast,on aγ-Al_(2)O_(3) support,the activity decreases with the Ni content.Overall,Al_(2)O_(3)-supported catalysts,exhibiting a smaller NiCu alloy particle size,are more active than SiO_(2)-supported ones.In terms of selectivity,SiO_(2)-supported catalysts mainly hydrogenate anisole to methoxycyclohexane,while,particularly at higher conversions,γ-Al_(2)O_(3)-supported catalysts are able to further convert methoxycyclohexane to cyclohexane,demonstrating the importance of acid sites for low-temperature HDO.The Ni/Cu ratio also steers the selectivity,but not the catalyst stability.Deactivation phenomena are only support dependent:while on SiO_(2)-supported catalysts,active site sintering occurs,attributed to weak stabilization of metal particles by the support,acid catalyzed coking is the main cause of deactivation on theγ-Al_(2)O_(3)-supported catalysts.展开更多
In this work,the CuAl-LDO/c-CNTs catalyst was fabricated via in situ oriented assembly of layered-double hydroxides(LDHs)and citric acid-modified carbon nanotubes(c-CNTs)followed by annealing treatment,and evaluated i...In this work,the CuAl-LDO/c-CNTs catalyst was fabricated via in situ oriented assembly of layered-double hydroxides(LDHs)and citric acid-modified carbon nanotubes(c-CNTs)followed by annealing treatment,and evaluated in the selective catalytic oxidation(SCO)of NH_(3)to N_(2).The CuAl-LDO/c-CNTs catalyst presented better catalytic performance(98%NH_(3)conversion with nearly 90%N_(2)selectivity at 513 K)than other catalysts,such as CuAlO_(x)/CNTs,CuAlO_(x)/c-CNTs and CuAl-LDO/CNTs.Multiple characterizations were utilized to analyze the difference of physicochemical properties among four catalysts.XRD,TEM and XPS analyses manifested that CuO and Cu_(2)O nanoparticles dispersed well on the surface of the Cu Al-LDO/c-CNTs catalyst.Compared with other catalysts,larger specific surface area and better dispersion of CuAl-LDO/c-CNTs catalyst were conducive to the exposure of more active sites,thus improving the redox capacity of the active site and NH_(3)adsorption capacity.In-situ DRIFTS results revealed that the internal selective catalytic reduction(iSCR)mechanism was found over CuAl-LDO/c-CNTs catalyst.展开更多
CONSPECTUS:The carbon balance has been disrupted by the widespread use of fossil fuels and subsequent excessive emissions of carbon dioxide(CO_(2)),which has become an increasingly critical environmental challenge for...CONSPECTUS:The carbon balance has been disrupted by the widespread use of fossil fuels and subsequent excessive emissions of carbon dioxide(CO_(2)),which has become an increasingly critical environmental challenge for human society.The production and use of renewable energy sources and/or chemicals have been proposed as important strategies to reduce emissions,of which the electrochemical CO_(2)(or CO)reduction reaction(CO_(2)RR/CORR)in the aqueous systems represents a promising approach.Benefitted by the capacity of manufacturing high-value-added products(e.g.,ethylene,ethanol,formic acid,etc.)with a net-zero carbon emission,copper-based CO_(2)RR/CORR powered by sustainable electricity is regarded as a potential candidate for carbon neutrality.However,the diversity of selectivities in copper-based systems poses a great challenge to the research in this field and sets a great obstacle for future industrialization.To date,scientists have revealed that the electrocatalyst design and preparation play a significant role in achieving efficient and selective CO_(2)-to-chemical(or CO-to-chemical)conversion.Although substantial efforts have been dedicated to the catalyst preparation and corresponding electrosynthesis of sustainable chemicals from CO_(2)/CO so far,most of them are still derived from empirical or random searches,which are relatively inefficient and cost-intensive.Most of the mechanism studies have suggested that both intrinsic properties(such as electron states)and extrinsic environmental factors(such as surface energy)of a catalyst can significantly alter catalytic performance.Thus,these two topics are mainly discussed for copper-based catalyst developments in this Account.Here,we provided a concise and comprehensive introduction to the well-established strategies employed for the design of copperbased electrocatalysts for CO_(2)RR/CORR.We used several examples from our research group,as well as representative studies of other research groups in this field during the recent five years,with the perspectives of tuning local electron states,regulating alloy phases,modifying interfacial coverages,and adjusting other interfacial microenvironments(e.g.,molecule modification or surface energy).Finally,we employed the techno-economic assessment with a viewpoint on the future application of CO_(2)/CO electroreduction in manufacturing sustainable chemicals.Our study indicates that when carbon price is taken into account,the electrocatalytic CO_(2)-to-chemical conversion can be more market-competitive,and several potential value-added products including formate,methanol,ethylene,and ethanol can all make profits under optimal operating conditions.Moreover,a downstream module employing traditional chemical industrial processes(e.g.,thermal polymerization,catalytic hydrolysis,or condensation process)will also make the whole electrolysis system profitable in the future.These design principles,combined with the recent advances in the development of efficient copper-based electrocatalysts,may provide a low-cost and long-lasting catalytic system for a profitable industrial-scale CO_(2)RR in the future.展开更多
Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here...Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications.展开更多
Electrochemical reduction of CO_(2)(CO_(2)RR)to high value-added chemicals is an effective way to remove excess CO_(2) from the atmosphere.Due to the unique propensity of Cu for valuable hydrocarbons,Cu-based electroc...Electrochemical reduction of CO_(2)(CO_(2)RR)to high value-added chemicals is an effective way to remove excess CO_(2) from the atmosphere.Due to the unique propensity of Cu for valuable hydrocarbons,Cu-based electrocatalysts are the most potential catalysts that allow the conversion of CO_(2) into a variety of C_(2) products such as ethylene and ethanol.Rational design of Cu-based catalysts can improve their directional selectivity to C_(2) products.Hence,in this review,we summarize the recent progress in the mechanistic studies of Cu-based catalysts on reducing CO_(2) to C_(2) products.We focus on three key strategies for efficiently enhancing electrocatalytic performance of Cu-based catalysts,including tuning electronic structure,surface structure,and coordination environment.The correlation between the structural characteristics of Cu-based catalysts and their activity and selectivity to C_(2) products is discussed.Finally,we discuss the challenges in the field of CO_(2) electroreduction to C_(2) products and provide the perspectives to design efficient Cu-based catalysts in the future.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca...Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.展开更多
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and...Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.展开更多
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ...The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.展开更多
Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such ...Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show...Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show the unique capability of high selectivity toward 2e−ORR against the 4e−one.The extremely low surface density of the single-atom sites and the inflexibility in manipulating their geometric/electronic configurations,however,compromise the H_(2)O_(2) yield and impede further performance enhancement.Herein,we construct a family of multiatom catalysts(MACs),on which two or three single atoms are closely coordinated to form high-density active sites that are versatile in their atomic configurations for optimal adsorption of essential*OOH species.Among them,the Cox–Ni MAC presents excellent electrocatalytic performance for 2e−ORR,in terms of its exceptionally high H_(2)O_(2) yield in acidic electrolytes(28.96 mol L^(−1) gcat.^(−1) h^(−1))and high selectivity under acidic to neutral conditions in a wide potential region(>80%,0–0.7 V).Operando X-ray absorption and density functional theory analyses jointly unveil its unique trimetallic Co2NiN8 configuration,which efficiently induces an appropriate Ni–d orbital filling and modulates the*OOH adsorption,together boosting the electrocatalytic 2e−ORR capability.This work thus provides a new MAC strategy for tuning the geometric/electronic structure of active sites for 2e−ORR and other potential electrochemical processes.展开更多
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet...CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR.展开更多
The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-perf...The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-performance electro-catalysts.Currently,heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications.Compared to conventional cata-lysts,atomically dispersed metal atoms in carbon-based catalysts have more unsatu-rated coordination sites,quantum size effect,and strong metal-support interactions,resulting in exceptional catalytic activity.Of these,dual-atomic catalysts(DACs)have attracted extensive attention due to the additional synergistic effect between two adja-cent metal atoms.DACs have the advantages of full active site exposure,high selectiv-ity,theoretical 100%atom utilization,and the ability to break the scaling relationship of adsorption free energy on active sites.In this review,we summarize recent research advancement of DACs,which includes(1)the comprehensive understanding of the synergy between atomic pairs;(2)the synthesis of DACs;(3)characterization meth-ods,especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy;and(4)electrochemical energy-related applications.The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules,such as oxygen reduction reaction,CO_(2) reduction reaction,hydrogen evolution reaction,and N_(2) reduction reaction.The future research challenges and opportunities are also raised in prospective section.展开更多
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high...MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).展开更多
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran...The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production.展开更多
文摘The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)3 and Cu(OH)2 were prepared in the microemulsion of dodecylbenzenesulfonic acid sodium(S)/n-butanol(A)/toluene(O)/water with V(A)/V(O) = 0.25 and W(A)/W(S) = 1.50. This catalyst was characterized by particle size analysis, XRD and TG. The results of particle size analysis showed that Fe(OH)3 particles with a mean size of 17.1 nm and Cu(OH)2 particles with an average size of 6.65 um were obtained. TG analysis and XRD patterns suggested that 673 K is the optimal calcination temperature. CO hydrogenation produced C+OH with a high selectivity above 58 wt% by using the ultrafine particles as catalyst, and the total alcohol yield of 0.250 g·ml^-1 ·h^-1 was obtained when the contents of Al2O3 and K were 88.61 wt% and 1.60 wt%, respectively.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.
基金supported by the National Natural Science Foundation of China (Grant Nos.62006219 and 62001266)Guangdong Innovative and Entrepre-neurial Research Team Program (grant No.2017ZT07C341)+2 种基金the Bureau of Industry and Information Technology of Shenzhen for the 2017 Graphene Manufacturing Innovation Center Project (No.201901171523)the China Postdoctoral Science Foundation (No.2020M680506)Guangdong Basic and Applied Basic Research Foundation (No.2020A1515110338).
文摘Various strategies,including controls of morphology,oxidation state,defect,and doping,have been developed to improve the performance of Cu-based catalysts for CO_(2) reduction reaction(CO_(2)RR),generating a large amount of data.However,a unified understanding of underlying mechanism for further optimization is still lacking.In this work,combining first-principles calculations and machine learning(ML)techniques,we elucidate critical factors influencing the catalytic properties,taking Cu-based single atom alloys(SAAs)as examples.Our method relies on high-throughput calculations of 2669 CO adsorption configurations on 43 types of Cu-based SAAs with various surfaces.Extensive ML analyses reveal that low generalized coordination numbers and valence electron number are key features to determine catalytic performance.Applying our ML model with cross-group learning scheme,we demonstrate the model generalizes well between Cu-based SAAs with different alloying elements.Further,electronic structure calculations suggest surface negative center could enhance CO adsorption by back donating electrons to antibonding orbitals of CO.Finally,several SAAs,including PCu,AgCu,GaCu,ZnCu,SnCu,GeCu,InCu,and SiCu,are identified as promising CO_(2)RR catalysts.Our work provides a paradigm for the rational design and fast screening of SAAs for various electrocatalytic reactions.
基金financially supported by Key Projects of National Natural Science Foundation of China(No.21736007)National Natural Science Foundation of China(Nos.22078221,21776193,21476155)Top Young Innovative Talents of Shanxi。
文摘In the conversion process of syngas-to-C_(2)species,the OH species are inevitably produced accompanying the production of key intermediates CH_(x)(x=1-3),traditionally,the function of surface OH species is generally accepted as the hydrogenating reactive species.This work for the first time proposed and confirmed the assisted catalytic mechanism of surface OH species that performed as the promoter for syngas-to-C_(2)species on Cu-based catalysts.DFT and microkinetic modeling results reveal that the produced OH species accompanying the intermediates CH_(x)production on the MCu(M=Co,Fe,Rh)catalysts can stably exist to form OH/MCu catalysts,on which the presence of surface OH species as the promoter not only presented better activity and selectivity toward CH_(x)(x=1-3)compared to MCu catalysts,but also significantly suppressed CH_(3)OH production,providing enough CH_(x)sources to favor the production of C_(2)hydrocarbons and oxygenates.Correspondingly,the electronic properties analysis revealed the essential relationship between the electronic feature of OH/MCu catalysts and catalytic performance,attributing to the unique electronic micro-environment of the catalysts under the interaction of surface OH species.This new mechanism is called as OH-assisted catalytic mechanism,which may be applied in the reaction systems related to the generation of OH species.
基金Foundation-Flanders(FWO)(1SA7522N)for financial support through Grant Number 12Z2218N.
文摘The effects of the metal ratio of NiCu catalysts on the low-temperature hydrodeoxygenation(HDO)of anisole were assessed on a neutral SiO_(2) and an acidicγ-Al_(2)O_(3) support.The activity of SiO_(2)-supported catalysts increases with the Ni content in the NiCu phase,related to Ni’s hydrogenation capacity.In contrast,on aγ-Al_(2)O_(3) support,the activity decreases with the Ni content.Overall,Al_(2)O_(3)-supported catalysts,exhibiting a smaller NiCu alloy particle size,are more active than SiO_(2)-supported ones.In terms of selectivity,SiO_(2)-supported catalysts mainly hydrogenate anisole to methoxycyclohexane,while,particularly at higher conversions,γ-Al_(2)O_(3)-supported catalysts are able to further convert methoxycyclohexane to cyclohexane,demonstrating the importance of acid sites for low-temperature HDO.The Ni/Cu ratio also steers the selectivity,but not the catalyst stability.Deactivation phenomena are only support dependent:while on SiO_(2)-supported catalysts,active site sintering occurs,attributed to weak stabilization of metal particles by the support,acid catalyzed coking is the main cause of deactivation on theγ-Al_(2)O_(3)-supported catalysts.
基金supported by the National Natural Science Foundation of China(51978436,52000092,22272116)Fundamental Research Program of Shanxi Province(202103021224043)。
文摘In this work,the CuAl-LDO/c-CNTs catalyst was fabricated via in situ oriented assembly of layered-double hydroxides(LDHs)and citric acid-modified carbon nanotubes(c-CNTs)followed by annealing treatment,and evaluated in the selective catalytic oxidation(SCO)of NH_(3)to N_(2).The CuAl-LDO/c-CNTs catalyst presented better catalytic performance(98%NH_(3)conversion with nearly 90%N_(2)selectivity at 513 K)than other catalysts,such as CuAlO_(x)/CNTs,CuAlO_(x)/c-CNTs and CuAl-LDO/CNTs.Multiple characterizations were utilized to analyze the difference of physicochemical properties among four catalysts.XRD,TEM and XPS analyses manifested that CuO and Cu_(2)O nanoparticles dispersed well on the surface of the Cu Al-LDO/c-CNTs catalyst.Compared with other catalysts,larger specific surface area and better dispersion of CuAl-LDO/c-CNTs catalyst were conducive to the exposure of more active sites,thus improving the redox capacity of the active site and NH_(3)adsorption capacity.In-situ DRIFTS results revealed that the internal selective catalytic reduction(iSCR)mechanism was found over CuAl-LDO/c-CNTs catalyst.
文摘CONSPECTUS:The carbon balance has been disrupted by the widespread use of fossil fuels and subsequent excessive emissions of carbon dioxide(CO_(2)),which has become an increasingly critical environmental challenge for human society.The production and use of renewable energy sources and/or chemicals have been proposed as important strategies to reduce emissions,of which the electrochemical CO_(2)(or CO)reduction reaction(CO_(2)RR/CORR)in the aqueous systems represents a promising approach.Benefitted by the capacity of manufacturing high-value-added products(e.g.,ethylene,ethanol,formic acid,etc.)with a net-zero carbon emission,copper-based CO_(2)RR/CORR powered by sustainable electricity is regarded as a potential candidate for carbon neutrality.However,the diversity of selectivities in copper-based systems poses a great challenge to the research in this field and sets a great obstacle for future industrialization.To date,scientists have revealed that the electrocatalyst design and preparation play a significant role in achieving efficient and selective CO_(2)-to-chemical(or CO-to-chemical)conversion.Although substantial efforts have been dedicated to the catalyst preparation and corresponding electrosynthesis of sustainable chemicals from CO_(2)/CO so far,most of them are still derived from empirical or random searches,which are relatively inefficient and cost-intensive.Most of the mechanism studies have suggested that both intrinsic properties(such as electron states)and extrinsic environmental factors(such as surface energy)of a catalyst can significantly alter catalytic performance.Thus,these two topics are mainly discussed for copper-based catalyst developments in this Account.Here,we provided a concise and comprehensive introduction to the well-established strategies employed for the design of copperbased electrocatalysts for CO_(2)RR/CORR.We used several examples from our research group,as well as representative studies of other research groups in this field during the recent five years,with the perspectives of tuning local electron states,regulating alloy phases,modifying interfacial coverages,and adjusting other interfacial microenvironments(e.g.,molecule modification or surface energy).Finally,we employed the techno-economic assessment with a viewpoint on the future application of CO_(2)/CO electroreduction in manufacturing sustainable chemicals.Our study indicates that when carbon price is taken into account,the electrocatalytic CO_(2)-to-chemical conversion can be more market-competitive,and several potential value-added products including formate,methanol,ethylene,and ethanol can all make profits under optimal operating conditions.Moreover,a downstream module employing traditional chemical industrial processes(e.g.,thermal polymerization,catalytic hydrolysis,or condensation process)will also make the whole electrolysis system profitable in the future.These design principles,combined with the recent advances in the development of efficient copper-based electrocatalysts,may provide a low-cost and long-lasting catalytic system for a profitable industrial-scale CO_(2)RR in the future.
基金the National Key Research and Development Program of China[No.2021YFB4000700]the CAS Project for Young Scientists in Basic Research[YSBR-022]+1 种基金the National Natural Science Foundation of China[22008136,21925803]the Welsh Government funded Taith Research Mobility Programme[No.524339]。
文摘Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications.
基金the supports sponsored by the National Natural Science Foundation of China(22005215,22090031)the Hebei Province Innovation Ability Promotion Project(20544401D,20312201D)。
文摘Electrochemical reduction of CO_(2)(CO_(2)RR)to high value-added chemicals is an effective way to remove excess CO_(2) from the atmosphere.Due to the unique propensity of Cu for valuable hydrocarbons,Cu-based electrocatalysts are the most potential catalysts that allow the conversion of CO_(2) into a variety of C_(2) products such as ethylene and ethanol.Rational design of Cu-based catalysts can improve their directional selectivity to C_(2) products.Hence,in this review,we summarize the recent progress in the mechanistic studies of Cu-based catalysts on reducing CO_(2) to C_(2) products.We focus on three key strategies for efficiently enhancing electrocatalytic performance of Cu-based catalysts,including tuning electronic structure,surface structure,and coordination environment.The correlation between the structural characteristics of Cu-based catalysts and their activity and selectivity to C_(2) products is discussed.Finally,we discuss the challenges in the field of CO_(2) electroreduction to C_(2) products and provide the perspectives to design efficient Cu-based catalysts in the future.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by the National Natural Science Foundation of China (22178149)Jiangsu Distinguished Professor Program+4 种基金Natural Science Foundation of Jiangsu Province for Outstanding Youth Scientists (BK20211599)Key R and D Project of Zhenjiang City (CQ2022001)Scientific Research Startup Foundation of Jiangsu University (Nos. 202096 and 22JDG020)Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment of Fuzhou University (SKLPEE-KF202310)the Opening Project of Structural Optimization and Application of Functional Molecules Key Laboratory of Sichuan Province (2023GNFZ-01)。
文摘Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.
基金supported by the National Natural Science Foundation of China(51872115,12234018 and 52101256)Beijing Synchrotron Radiation Facility(BSRF,4B9A)。
文摘Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(NRF,2021R1C1C1013953,2022K1A4A7A04094394,2022K1A4A7A04095890)。
文摘The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.
基金the financial support from by the National Key Research and Development Program of China(No.2022YFB4101800)National Natural Science Foundation of China(No.22278298)Program for Introducing Talents of Discipline to Universities of China(No.BP0618007).
文摘Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金supported by the Natural Science Foundation of China(Grant Nos.22179093,21905202,and 51972312)the Natural Science Foundation of Liaoning Province,China(Grant No.2020-MS-003)+1 种基金the Australian Research Council through the Discovery Project(No.DP210102215)the Electron Microscopy Center in the University of Wollongong.The theoretical calculations performed in this work were carried out on TianHe-1(A)at the National Supercomputer Center in Tianjin.
文摘Hydrogen peroxide(H_(2)O_(2))production by the electrochemical 2-electron oxygen reduction reaction(2e−ORR)is a promising alternative to the energy-intensive anthraquinone process,and single-atom electrocatalysts show the unique capability of high selectivity toward 2e−ORR against the 4e−one.The extremely low surface density of the single-atom sites and the inflexibility in manipulating their geometric/electronic configurations,however,compromise the H_(2)O_(2) yield and impede further performance enhancement.Herein,we construct a family of multiatom catalysts(MACs),on which two or three single atoms are closely coordinated to form high-density active sites that are versatile in their atomic configurations for optimal adsorption of essential*OOH species.Among them,the Cox–Ni MAC presents excellent electrocatalytic performance for 2e−ORR,in terms of its exceptionally high H_(2)O_(2) yield in acidic electrolytes(28.96 mol L^(−1) gcat.^(−1) h^(−1))and high selectivity under acidic to neutral conditions in a wide potential region(>80%,0–0.7 V).Operando X-ray absorption and density functional theory analyses jointly unveil its unique trimetallic Co2NiN8 configuration,which efficiently induces an appropriate Ni–d orbital filling and modulates the*OOH adsorption,together boosting the electrocatalytic 2e−ORR capability.This work thus provides a new MAC strategy for tuning the geometric/electronic structure of active sites for 2e−ORR and other potential electrochemical processes.
基金financially supported by the National Natural Science Foundation of China(52072409)the Major Scientific and Technological Innovation Project of Shandong Province(2020CXGC010403)+1 种基金the Taishan Scholar Project(No.ts201712020)the Natural Science Foundation of Shandong Province(ZR2021QE062)
文摘CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR.
基金This work was financially supported by the National Key Research and Development Program of China(2018YFA0702002)the Beijing Natural Science Foundation(Z210016)+1 种基金the National Natural Science Foundation of China(51967020,21935001)Shanxi Energy Internet Research Institute(SXEI 2023A004).
文摘The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-performance electro-catalysts.Currently,heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications.Compared to conventional cata-lysts,atomically dispersed metal atoms in carbon-based catalysts have more unsatu-rated coordination sites,quantum size effect,and strong metal-support interactions,resulting in exceptional catalytic activity.Of these,dual-atomic catalysts(DACs)have attracted extensive attention due to the additional synergistic effect between two adja-cent metal atoms.DACs have the advantages of full active site exposure,high selectiv-ity,theoretical 100%atom utilization,and the ability to break the scaling relationship of adsorption free energy on active sites.In this review,we summarize recent research advancement of DACs,which includes(1)the comprehensive understanding of the synergy between atomic pairs;(2)the synthesis of DACs;(3)characterization meth-ods,especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy;and(4)electrochemical energy-related applications.The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules,such as oxygen reduction reaction,CO_(2) reduction reaction,hydrogen evolution reaction,and N_(2) reduction reaction.The future research challenges and opportunities are also raised in prospective section.
基金supported by research programs of National Natural Science Foundation of China(52101274,51731002)Natural Science Foundation of Shandong Province(No.ZR2020QE011)Youth Top Talent Foundation of Yantai University(2219008).
文摘MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).
基金Hubei Provincial Natural Science Foundation of China (2023AFB0049)Scientific Research Fund Project of Wuhan Institute of Technology (K202232 and K2023028)Graduate Education Innovation Fund of Wuhan Institute of Technology (CX2023091)。
文摘The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production.