Nanoparticles (NPs) with flower-like and frame morphologies were synthesized from CuS, a remarkable transition-metal sulfide. We introduced two kinds of CuS NPs into a nematic liquid crystal (LC) 4-cyano-4'-n-pen...Nanoparticles (NPs) with flower-like and frame morphologies were synthesized from CuS, a remarkable transition-metal sulfide. We introduced two kinds of CuS NPs into a nematic liquid crystal (LC) 4-cyano-4'-n-pentylbiphenyl (5CB) and investigated the morphology- and concentration-dependent alignment and electro-optic (E-O) effects of CuS NPs on 5CB. A trace amount of flower-like CuS NPs induced a uniform homeotropic orientation of LC molecules; this is attributable to the obtained desirable compact nanosheet structure. Moreover, both flower-like and frame CuS NPs induced a remarkable improvement in the E-O properties of 5CB, and the flower-like CuS/5CB system exhibited a better performance. The doped CuS NPs in the LC host suppressed the shielding effect and strengthened the electric field, resulting in outstanding E-O properties. At a doping concentration of 0.05 wt.%, CuS NPs were well-dispersed and achieved the optimum E-O performance. This study provides a novel method for inducing a uniform orientation and enhanced E-O properties of LC molecules by doping with extraordinary CuS NPs, leading to potential applications in establishing flexible LC displays.展开更多
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited...In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.展开更多
Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive a...Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.展开更多
Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles ...Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.展开更多
The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions f...The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.展开更多
Copper nanoparticles were successfully prepared in large scale by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure, and morphology of the s...Copper nanoparticles were successfully prepared in large scale by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure, and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM), and the corresponding selected area electron diffraction (SAED). The experimental results indicate that the crystal structure of the samples is fcc structure the same as that of the bulk materials. The specific surface area is 11 m^2/g, the particle size distribution is 30 to 90 nm, and the average particle size is about 67 nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles with uniform size, high purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.展开更多
Cu nanoparticles were prepared by reducing Cu2+ ions with NaBH4 in alkaline solution. The effects of NaBH4 concentration and dripping rate on the formation of Cu nanoparticles were studied. The optimum conditions are...Cu nanoparticles were prepared by reducing Cu2+ ions with NaBH4 in alkaline solution. The effects of NaBH4 concentration and dripping rate on the formation of Cu nanoparticles were studied. The optimum conditions are found to be 0.2 mol/L Cu2+, solution with pH=12, temperature of 313 K and 1% gelatin as dispersant, to which 0.4 mol/L NaBH4 is added at a dripping rate of 50 mL/min. NH3-H2O is found to be the optimal complexant to form the Cu precursor. A series experiments were conducted to study the reaction process at different time points.展开更多
Cu nanoparticles (CuNPs) have been synthesized through an easy route by chemical reduction at room temperature. The Cu^2+ ions were reduced and stabilized with sodium borohydride and polyvinylpyrrolidone, respectively...Cu nanoparticles (CuNPs) have been synthesized through an easy route by chemical reduction at room temperature. The Cu^2+ ions were reduced and stabilized with sodium borohydride and polyvinylpyrrolidone, respectively. The effect of the variation of the reducing agent/precursor-salt (RA/PS) ratio on the size and morphology of the CuNPs was evaluated. The synthesized material was studied by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The UV-Vis spectra showed a CuNPs plasmon peak at 569 nm and another peak belonging to Cu2O at 485 nm. XRD analysis showed the fcc-Cu phase with a small amount of fcc-Cu2O compound. SEM and TEM studies displayed that small semispherical CuNPs of approximately 7 nm were obtained at the RA/PS ratio of 2.6. The excess of polyvinylpyrrolidone stabilizer played an essential role in preventing CuNPs oxidation. On the other side, Cu2O polyhedral particles with larger sizes up to 150 nm were identified in the RA/PS ratio range of 2.0-1.84. In addition, Cu2O particles having star morphologies with quantum confinement at their tips were obtained at the RA/PS ratio of 1.66.展开更多
Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phas...Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phase. The atomic force microscopy images indicate that the film exhibits nanoparticles with an average size of nearly 44 nm. Specrtophotometric measurements for the transmittance and reflectance are carried out at normal incidence in a spectral wavelength range of 450 nm-2500 nm. The refractive index, n, as well as the absorption index, k is calculated. Some dispersion parameters are determined. The analyses of el and e2 reveal several absorption peaks. The analysis of the spectral behavior of the absorption coefficient, c~, in the absorption region reveals direct and indirect allowed transitions. The dark electrical resistivity is studied as a function of film thickness and temperature. Tellier's model is adopted for determining the mean free path and bulk resistance.展开更多
Cu2O nanocubes and Cu nanoparticles were prepared by reducing Cu( Ⅱ ) salt with ethanol as the reducing agent and solvent in the presence of multidentate ligand poly(vinylpyrrolidone) (PVP) under different cond...Cu2O nanocubes and Cu nanoparticles were prepared by reducing Cu( Ⅱ ) salt with ethanol as the reducing agent and solvent in the presence of multidentate ligand poly(vinylpyrrolidone) (PVP) under different conditions. The morphologies and the crystalline structures of the products were characterized by using scanning electron microscopy (SEM), transmission electron microscopy(TEM), selected-area electron diffraction( SAED), and powder X-ray diffraction(XRD). In particular, the influences of the solvothennal reaction temperature and alkalinity on the products were investigated. A lower temperature and a lower alkali concentration favor the formation of the Cu2O phase, whereas a higher temperature and a higher alkali concentration generally lead to the formation of the Cu phase.展开更多
The Cu2ZnSnS4 thin film was prepared by a facile solution method without vacuum environment and toxic substance. The formation mechanism of the film was studied by transmission electron microscopy (TEM), X-ray diffrac...The Cu2ZnSnS4 thin film was prepared by a facile solution method without vacuum environment and toxic substance. The formation mechanism of the film was studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Raman scattering measurements. Through cyclic voltammetry and photo-electricity tests, the electrocatalytic activity of the prepared film as the counter electrode of dye-sensitizedsolar cell was also studied. The results show that the mixed precursor solution mainly consists of Cu2SnS3 nanoparticles and Zn ions.After 550 °C annealing process on the precursor film prepared from the mixed solution, Cu2ZnSnS4 thin film is obtained. Besides, itis found that the prepared Cu2ZnSnS4 thin film has the electrocatalytic activity toward the redox reaction of I3?/I? and the dye-sensitized solar cell with the prepared Cu2ZnSnS4 thin film as the counter electrode achieves the efficiency of 1.09%.展开更多
Copper and silver nanoparticles were synthesized and characterized in two minutes at 175<span style="white-space:nowrap;">°</span>C in a one-step synthesis using a modified polyol (ethyl...Copper and silver nanoparticles were synthesized and characterized in two minutes at 175<span style="white-space:nowrap;">°</span>C in a one-step synthesis using a modified polyol (ethylene glycol) method and a microwave heating process. We successfully synthesized spherical Silver (Ag) and Copper nanoparticles (CuNP) with a crystallite size of less than 10 nm, as well as irregular silver-copper nanoparticles (AgCuNP) with a crystallite size of less than 15 nm, as confirmed by X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM). The successful synthesis of AgCuNP with 1:1 molar ratio and constituted by 51.74% of copper and 48.26% of silver was corroborated using the Energy Dispersive X-ray (EDX) mapping technique. The AgNP and AgCuNP exhibited more stability in suspension, in comparison to CuNP, as observed by continuously monitoring the absorbance with UV-Vis spectroscopy for 12 days. Furthermore, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNP, CuNP, and AgCuNP were determined, against Gram-negative and Gram-positive bacteria, and yeast. The obtained MIC and MBC values indicate that AgCu nanoparticles exhibited bactericidal properties greater than its constituents. On the contrary, antifungal activity of AgCuNP against yeast was not observed.展开更多
Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Here...Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.展开更多
The electrochemical carbon dioxide reduction reaction(eCO_(2)RR),which converts CO_(2)into various hydrocarbons or alcohols,has been extensively researched because it promises a sustainable energy economy.However,only...The electrochemical carbon dioxide reduction reaction(eCO_(2)RR),which converts CO_(2)into various hydrocarbons or alcohols,has been extensively researched because it promises a sustainable energy economy.However,only copper(Cu)can currently achieve stable and efficient hydrocarbon conversion in the eCO_(2)RR.Therefore,understanding the catalytic mechanisms and summarizing the research progress on synthesis strategies of Cu catalysts are essential for the eCO_(2)RR.This paper reviews Cu catalysts with different surface states of Cu catalysts:oxide-derived Cu,Cu nanoparticles,Cu single atoms,and Cu nanoclusters.It then reviews the development and progress of different Cu-catalyst preparation methods in recent years,focusing on the activity and selectivity of materials.Besides revealing the tendencies of catalytic selection and deep reactive mechanisms of Cu catalysts with four different surface states,this review can guide the subsequent construction of catalysts and provides an understanding of catalytic mechanisms.展开更多
The Cu2S/tetrapod-like ZnO whisker(T-ZnOw) heterostructures were successfully synthesized via a simple polyol process employing the poly(vinyl pyrrolidone)(PVP) as a surfactant.The as-prepared heterostructures w...The Cu2S/tetrapod-like ZnO whisker(T-ZnOw) heterostructures were successfully synthesized via a simple polyol process employing the poly(vinyl pyrrolidone)(PVP) as a surfactant.The as-prepared heterostructures were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FTIR).The photocatalytic properties of Cu2S/T-ZnOw nanocomposites synthesized with different PVP concentrations were evaluated by photodegradation of methyl orange(MO) under UV irradiation.The results show that the Cu2S/T-ZnOw nanocomposites exhibit remarkable improved photocatalytic property compared with the pure T-ZnOw.The sample prepared with 3.0 g/L PVP shows an excellent photocatalytic property and the highest photodegradation rate of MO is 97% after UV irradiation for 120 min.Besides,the photocatalytic activity of the photocatalyst has no evident decrease even after four cycles,which demonstrates that the Cu2S/T-ZnOw photocatalyst exhibits an excellent photostability.Moreover,the photocatalytic mechanism of the Cu2S/T-ZnOw nanocomposites was also discussed.展开更多
Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carri...Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.展开更多
Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of...Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of tribotester, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and nanoindentation instrument. The results indicate that the modified nanocopper additive can significantly improve the wear resistance and reduce friction coefficient of base oil. A copper protective film is formed and contributes to the excellent tribological properties of nanocopper additive. On the basis of the film forming mechanism, a new in-situ repair method was designed and used to repair wear-out-failure injection pump plunger and barrel. Furthermore, the current research progress of nanoparticles as green energy-saving lubricating oil additives were presented.展开更多
According to ultraviolet (UV)-vis absorption spectra recorded in the DNA metallization process, DNA-templated Co/Cu binary nanoparticle chains are fabricated by incubating genome DNA of paralichthys olivaceus muscle...According to ultraviolet (UV)-vis absorption spectra recorded in the DNA metallization process, DNA-templated Co/Cu binary nanoparticle chains are fabricated by incubating genome DNA of paralichthys olivaceus muscle in CoCl2 and CuCl2 mixture solution for 20 hours and reducing the complex for 2 hours. Transmission electron microscopy observation indicates that Co and Cu nanoparticles with 20 nm in diameter were randomly dispersed on the DNA template. The superconducting quantum interference device (SQUID) measurements display that the magnetic interaction between cobalt particles is greatly decreased by the copper particle. With increasing copper content, the coercivity of the systems enhance from 9 Oe to 100 Oe (1 Oe=79.5775 A/m).展开更多
To realize economical and effective removal of hazardous 4-nitrophenol from the environment,we developed an easily recyclable ZnO nanowire array decorated with Cu nanoparticles.Its salix argyracea-shaped structure not...To realize economical and effective removal of hazardous 4-nitrophenol from the environment,we developed an easily recyclable ZnO nanowire array decorated with Cu nanoparticles.Its salix argyracea-shaped structure not only provides a platform to achieve stable and good dispersion of Cu nanoparticles,but also offers a great deal of catalytically active sites.The density functional theory calculations reveal that ZnO and Cu have a very beneficial synergistic effect on their catalytic capability.This synergy is ascribed to the electronic localization occurring at ZnO/Cu interface,which helps improve Cu nanoparticle’s ability to adsorb electro-negatively 4-nitrophenolate ions and to capture hydrogen radicals,thereby accelerating the hydrogen transfer from metal hydride complex to 4-nitrophenol.Benefiting from these characteristics,it exhibits high efficiency and reusability towards the catalytic reduction of waste 4-nitrophenol to valuable 4-aminophenol with a rate constant of 43.02×10^(-3)s^(-1)and an average conversion of 96.5%in 90 s during 10 cycles.This activity is superior to that of most reported noble-or non-noble-metal powder,bulk,coating,and array catalysts,indicating its competitive advantages in cost and efficiency,as well as enticing application prospects.展开更多
In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and su...In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.展开更多
文摘Nanoparticles (NPs) with flower-like and frame morphologies were synthesized from CuS, a remarkable transition-metal sulfide. We introduced two kinds of CuS NPs into a nematic liquid crystal (LC) 4-cyano-4'-n-pentylbiphenyl (5CB) and investigated the morphology- and concentration-dependent alignment and electro-optic (E-O) effects of CuS NPs on 5CB. A trace amount of flower-like CuS NPs induced a uniform homeotropic orientation of LC molecules; this is attributable to the obtained desirable compact nanosheet structure. Moreover, both flower-like and frame CuS NPs induced a remarkable improvement in the E-O properties of 5CB, and the flower-like CuS/5CB system exhibited a better performance. The doped CuS NPs in the LC host suppressed the shielding effect and strengthened the electric field, resulting in outstanding E-O properties. At a doping concentration of 0.05 wt.%, CuS NPs were well-dispersed and achieved the optimum E-O performance. This study provides a novel method for inducing a uniform orientation and enhanced E-O properties of LC molecules by doping with extraordinary CuS NPs, leading to potential applications in establishing flexible LC displays.
基金supported by the National Natural Science Foundation of China(32371407,82160421)the Natural Science Foundation of Jiangsu Province(BK20211322)。
文摘In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.
基金Projects(41172110,61107090)supported by the National Natural Science Foundation of China
文摘Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.
文摘Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.
文摘The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.
基金This work was financially supported by the Natural Science Foundation of Gansu Province, China (No. 3ZS042-B25-017)
文摘Copper nanoparticles were successfully prepared in large scale by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure, and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM), and the corresponding selected area electron diffraction (SAED). The experimental results indicate that the crystal structure of the samples is fcc structure the same as that of the bulk materials. The specific surface area is 11 m^2/g, the particle size distribution is 30 to 90 nm, and the average particle size is about 67 nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles with uniform size, high purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.
文摘Cu nanoparticles were prepared by reducing Cu2+ ions with NaBH4 in alkaline solution. The effects of NaBH4 concentration and dripping rate on the formation of Cu nanoparticles were studied. The optimum conditions are found to be 0.2 mol/L Cu2+, solution with pH=12, temperature of 313 K and 1% gelatin as dispersant, to which 0.4 mol/L NaBH4 is added at a dripping rate of 50 mL/min. NH3-H2O is found to be the optimal complexant to form the Cu precursor. A series experiments were conducted to study the reaction process at different time points.
基金the National Council of Science and Technology (Conacyt) of Mexico for the financial support
文摘Cu nanoparticles (CuNPs) have been synthesized through an easy route by chemical reduction at room temperature. The Cu^2+ ions were reduced and stabilized with sodium borohydride and polyvinylpyrrolidone, respectively. The effect of the variation of the reducing agent/precursor-salt (RA/PS) ratio on the size and morphology of the CuNPs was evaluated. The synthesized material was studied by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The UV-Vis spectra showed a CuNPs plasmon peak at 569 nm and another peak belonging to Cu2O at 485 nm. XRD analysis showed the fcc-Cu phase with a small amount of fcc-Cu2O compound. SEM and TEM studies displayed that small semispherical CuNPs of approximately 7 nm were obtained at the RA/PS ratio of 2.6. The excess of polyvinylpyrrolidone stabilizer played an essential role in preventing CuNPs oxidation. On the other side, Cu2O polyhedral particles with larger sizes up to 150 nm were identified in the RA/PS ratio range of 2.0-1.84. In addition, Cu2O particles having star morphologies with quantum confinement at their tips were obtained at the RA/PS ratio of 1.66.
文摘Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phase. The atomic force microscopy images indicate that the film exhibits nanoparticles with an average size of nearly 44 nm. Specrtophotometric measurements for the transmittance and reflectance are carried out at normal incidence in a spectral wavelength range of 450 nm-2500 nm. The refractive index, n, as well as the absorption index, k is calculated. Some dispersion parameters are determined. The analyses of el and e2 reveal several absorption peaks. The analysis of the spectral behavior of the absorption coefficient, c~, in the absorption region reveals direct and indirect allowed transitions. The dark electrical resistivity is studied as a function of film thickness and temperature. Tellier's model is adopted for determining the mean free path and bulk resistance.
基金Supported by the National Natural Science Foundation of China(Nos. 20331010 and 90406002) and Specialized ResearchFund for the Doctoral Program of Higher Education(No. 20030007014).
文摘Cu2O nanocubes and Cu nanoparticles were prepared by reducing Cu( Ⅱ ) salt with ethanol as the reducing agent and solvent in the presence of multidentate ligand poly(vinylpyrrolidone) (PVP) under different conditions. The morphologies and the crystalline structures of the products were characterized by using scanning electron microscopy (SEM), transmission electron microscopy(TEM), selected-area electron diffraction( SAED), and powder X-ray diffraction(XRD). In particular, the influences of the solvothennal reaction temperature and alkalinity on the products were investigated. A lower temperature and a lower alkali concentration favor the formation of the Cu2O phase, whereas a higher temperature and a higher alkali concentration generally lead to the formation of the Cu phase.
基金Projects(51204214,51272292,51222403)supported by the National Natural Science Foundation of China
文摘The Cu2ZnSnS4 thin film was prepared by a facile solution method without vacuum environment and toxic substance. The formation mechanism of the film was studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Raman scattering measurements. Through cyclic voltammetry and photo-electricity tests, the electrocatalytic activity of the prepared film as the counter electrode of dye-sensitizedsolar cell was also studied. The results show that the mixed precursor solution mainly consists of Cu2SnS3 nanoparticles and Zn ions.After 550 °C annealing process on the precursor film prepared from the mixed solution, Cu2ZnSnS4 thin film is obtained. Besides, itis found that the prepared Cu2ZnSnS4 thin film has the electrocatalytic activity toward the redox reaction of I3?/I? and the dye-sensitized solar cell with the prepared Cu2ZnSnS4 thin film as the counter electrode achieves the efficiency of 1.09%.
文摘Copper and silver nanoparticles were synthesized and characterized in two minutes at 175<span style="white-space:nowrap;">°</span>C in a one-step synthesis using a modified polyol (ethylene glycol) method and a microwave heating process. We successfully synthesized spherical Silver (Ag) and Copper nanoparticles (CuNP) with a crystallite size of less than 10 nm, as well as irregular silver-copper nanoparticles (AgCuNP) with a crystallite size of less than 15 nm, as confirmed by X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM). The successful synthesis of AgCuNP with 1:1 molar ratio and constituted by 51.74% of copper and 48.26% of silver was corroborated using the Energy Dispersive X-ray (EDX) mapping technique. The AgNP and AgCuNP exhibited more stability in suspension, in comparison to CuNP, as observed by continuously monitoring the absorbance with UV-Vis spectroscopy for 12 days. Furthermore, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNP, CuNP, and AgCuNP were determined, against Gram-negative and Gram-positive bacteria, and yeast. The obtained MIC and MBC values indicate that AgCu nanoparticles exhibited bactericidal properties greater than its constituents. On the contrary, antifungal activity of AgCuNP against yeast was not observed.
基金financially supported by the Natural Science Foundation of Guangdong Province (2022A1515012359)the National Natural Science Foundation of China (21902121)+1 种基金the STU Scientific Research Foundation for Talents (NTF21020)the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (2020LKSFG09A)。
文摘Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.
基金supported by the Tianjin Science and Technology support key projects (20JCYBJC01420)。
文摘The electrochemical carbon dioxide reduction reaction(eCO_(2)RR),which converts CO_(2)into various hydrocarbons or alcohols,has been extensively researched because it promises a sustainable energy economy.However,only copper(Cu)can currently achieve stable and efficient hydrocarbon conversion in the eCO_(2)RR.Therefore,understanding the catalytic mechanisms and summarizing the research progress on synthesis strategies of Cu catalysts are essential for the eCO_(2)RR.This paper reviews Cu catalysts with different surface states of Cu catalysts:oxide-derived Cu,Cu nanoparticles,Cu single atoms,and Cu nanoclusters.It then reviews the development and progress of different Cu-catalyst preparation methods in recent years,focusing on the activity and selectivity of materials.Besides revealing the tendencies of catalytic selection and deep reactive mechanisms of Cu catalysts with four different surface states,this review can guide the subsequent construction of catalysts and provides an understanding of catalytic mechanisms.
基金Project (2009AA03Z427) supported by the High-tech Research and Development Program of ChinaProject (2006z02-006-3) supported by the Science Foundation of Sichuan Province,China
文摘The Cu2S/tetrapod-like ZnO whisker(T-ZnOw) heterostructures were successfully synthesized via a simple polyol process employing the poly(vinyl pyrrolidone)(PVP) as a surfactant.The as-prepared heterostructures were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FTIR).The photocatalytic properties of Cu2S/T-ZnOw nanocomposites synthesized with different PVP concentrations were evaluated by photodegradation of methyl orange(MO) under UV irradiation.The results show that the Cu2S/T-ZnOw nanocomposites exhibit remarkable improved photocatalytic property compared with the pure T-ZnOw.The sample prepared with 3.0 g/L PVP shows an excellent photocatalytic property and the highest photodegradation rate of MO is 97% after UV irradiation for 120 min.Besides,the photocatalytic activity of the photocatalyst has no evident decrease even after four cycles,which demonstrates that the Cu2S/T-ZnOw photocatalyst exhibits an excellent photostability.Moreover,the photocatalytic mechanism of the Cu2S/T-ZnOw nanocomposites was also discussed.
基金E.L.,K.L.,P.W.,and S.T.are supported by the SCCER-Heat and Energy Storage program
文摘Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.
文摘Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of tribotester, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and nanoindentation instrument. The results indicate that the modified nanocopper additive can significantly improve the wear resistance and reduce friction coefficient of base oil. A copper protective film is formed and contributes to the excellent tribological properties of nanocopper additive. On the basis of the film forming mechanism, a new in-situ repair method was designed and used to repair wear-out-failure injection pump plunger and barrel. Furthermore, the current research progress of nanoparticles as green energy-saving lubricating oil additives were presented.
基金Project partially supported by the Key Project of the Ministry of Education of China(Grant No.109025)
文摘According to ultraviolet (UV)-vis absorption spectra recorded in the DNA metallization process, DNA-templated Co/Cu binary nanoparticle chains are fabricated by incubating genome DNA of paralichthys olivaceus muscle in CoCl2 and CuCl2 mixture solution for 20 hours and reducing the complex for 2 hours. Transmission electron microscopy observation indicates that Co and Cu nanoparticles with 20 nm in diameter were randomly dispersed on the DNA template. The superconducting quantum interference device (SQUID) measurements display that the magnetic interaction between cobalt particles is greatly decreased by the copper particle. With increasing copper content, the coercivity of the systems enhance from 9 Oe to 100 Oe (1 Oe=79.5775 A/m).
基金the financial support from the National Natural Science Foundation of China(51804132 and 32101059)the Natural Science Foundation of Hebei Province(No.B2022202057)
文摘To realize economical and effective removal of hazardous 4-nitrophenol from the environment,we developed an easily recyclable ZnO nanowire array decorated with Cu nanoparticles.Its salix argyracea-shaped structure not only provides a platform to achieve stable and good dispersion of Cu nanoparticles,but also offers a great deal of catalytically active sites.The density functional theory calculations reveal that ZnO and Cu have a very beneficial synergistic effect on their catalytic capability.This synergy is ascribed to the electronic localization occurring at ZnO/Cu interface,which helps improve Cu nanoparticle’s ability to adsorb electro-negatively 4-nitrophenolate ions and to capture hydrogen radicals,thereby accelerating the hydrogen transfer from metal hydride complex to 4-nitrophenol.Benefiting from these characteristics,it exhibits high efficiency and reusability towards the catalytic reduction of waste 4-nitrophenol to valuable 4-aminophenol with a rate constant of 43.02×10^(-3)s^(-1)and an average conversion of 96.5%in 90 s during 10 cycles.This activity is superior to that of most reported noble-or non-noble-metal powder,bulk,coating,and array catalysts,indicating its competitive advantages in cost and efficiency,as well as enticing application prospects.
基金received from the National Natural Science Foundation of China(Nos.21522606,21676246,21476201,21436007,U1462201,and 21376216)supported by Zhejiang Provincial Natural Science Foundation of China(No.LR17B060003)Major Science and Technology Project of Water Pollution Control and Management(No.2017ZX07101)
文摘In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.