Precursor pastes were obtained by milling Cu-In alloys and Se powders. CulnSe2 thin films were successfully prepared by precursor layers, which were coated using these pastes, and were annealed in a H2 atmosphere. The...Precursor pastes were obtained by milling Cu-In alloys and Se powders. CulnSe2 thin films were successfully prepared by precursor layers, which were coated using these pastes, and were annealed in a H2 atmosphere. The pastes were tested by laser particle diameter analyzer, simultaneous thermogravimetric and differential thermal analysis instruments (TG-DTA), and X-ray diffractometry (XRD). Selenized films were characterized by XRD, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results indicate that chalcopyrite CuInSe2 is formed at 180℃ and the crystallinity of this phase is improved as the temperature rises. All the CuInSe2 thin films, which were annealed at various temperatures, exhibit the preferred orientation along the (112) plane. The compression of precursor layers before selenization step is one of the most essential factors for the preparation of perfect CuInSe2 thin films.展开更多
The CulnSe2 compound was prepared by selenization of Cu-In precursor, which was ultrasonic electrodeposited at constant current. CulnSe2 films were compacted to improve surface morphology. The films were characterized...The CulnSe2 compound was prepared by selenization of Cu-In precursor, which was ultrasonic electrodeposited at constant current. CulnSe2 films were compacted to improve surface morphology. The films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). It is indicated that ideal stoichiometrie CulnSe2 films can be obtained by the selenization of Cu-In precursor deposited at a current density of 20 mA/cm^2. Single-phase CulnSe2 is formed in the selenization proeess, and it exhibits preferred orientation along the (112) plane. The CulnSe2 films with smooth surface can be obtained under the pressure of 500 MPa at 60℃.展开更多
文摘Precursor pastes were obtained by milling Cu-In alloys and Se powders. CulnSe2 thin films were successfully prepared by precursor layers, which were coated using these pastes, and were annealed in a H2 atmosphere. The pastes were tested by laser particle diameter analyzer, simultaneous thermogravimetric and differential thermal analysis instruments (TG-DTA), and X-ray diffractometry (XRD). Selenized films were characterized by XRD, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results indicate that chalcopyrite CuInSe2 is formed at 180℃ and the crystallinity of this phase is improved as the temperature rises. All the CuInSe2 thin films, which were annealed at various temperatures, exhibit the preferred orientation along the (112) plane. The compression of precursor layers before selenization step is one of the most essential factors for the preparation of perfect CuInSe2 thin films.
基金supported by the Program of Higher-Level Talents of Inner Mongolia University(Nos.Z20090144 and Z20090120)
文摘The CulnSe2 compound was prepared by selenization of Cu-In precursor, which was ultrasonic electrodeposited at constant current. CulnSe2 films were compacted to improve surface morphology. The films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). It is indicated that ideal stoichiometrie CulnSe2 films can be obtained by the selenization of Cu-In precursor deposited at a current density of 20 mA/cm^2. Single-phase CulnSe2 is formed in the selenization proeess, and it exhibits preferred orientation along the (112) plane. The CulnSe2 films with smooth surface can be obtained under the pressure of 500 MPa at 60℃.