Background The critical period of weed control(CPWC) refers to the period of time during the crop growth cycle when weeds must be controlled to prevent yield losses.Ultra-narrow row(UNR) is a method of planting of cot...Background The critical period of weed control(CPWC) refers to the period of time during the crop growth cycle when weeds must be controlled to prevent yield losses.Ultra-narrow row(UNR) is a method of planting of cotton in rows that are 25 cm or less apart.Amongst cultural techniques for weed control,the use of narrow row spacing is considered to be a most promising approach that can effectively suppress weed growth and provide greater yields in cotton.This cultivation system can shorten the length of the critical weed-crop interference duration and results in greater yield.The current research aimed to determination of critical time of weed control in cotton(Gossypium hirsutum L.) under conventional and ultra-narrow row spacing conditions.Field experiments were arranged as factorial experiment in a randomized complete block design with three replications.Factors were cultivation system(conventional(50 cm row spacing) and ultra narrow row(25 cm row spacing and weed treatment including 30,45,60,and 75 days weeding after emergence during the growing season(weed free),and 30,45,60,and 75 without weeding(weed infested) in the growing season along with weedy and weed-free from sowing to harvesting.A four-parameter loglogistic model was fit to the two sets of relating relative crop yield to data obtained from increasing durations of weed interference and lengths of weed-free period.Results In both years and cultivation systems,the relative yield of cotton decreased with the increasing duration of weed-interference but increased with the increasing duration of weed-free period.Ultra-narrow row cultivation delayed the beginning of the CPWC in cotton.Under ultra-narrow row condition,the CPWC ranged from 21 to 99 days after germination in 2021 and 23 to 91 days in 2022 based on the 5% acceptable yield loss.Under conventional cultivation CPWC ranged from 17 to 102 days after emergence in 2021 and 18 to 95 days after emergence in 2022.Conclusions Under both conventional and Ultra-narrow row conditions,weed interference reduces seed yield.Under ultra-narrow row condition,weed interference until 21.1–23.5 days after cotton emergence and under conventional condition,weed interference until 16.9–18.5 days after cotton emergence had not significant reduction on cotton yield.展开更多
To understand methane (CH4) and nitrous oxide (N2O) emissions from permanently flooded rice paddy fields and to develop mitigation options, a field experiment was conducted in situ for two years (from late 2002 t...To understand methane (CH4) and nitrous oxide (N2O) emissions from permanently flooded rice paddy fields and to develop mitigation options, a field experiment was conducted in situ for two years (from late 2002 to early 2005) in three rice-based cultivation systems, which are a permanently flooded rice field cultivated with a single time and followed by a non-rice season (PF), a rice-wheat rotation system (RW) and a rice-rapeseed rotation system (RR) in a hilly area in Southwest China. The results showed that the total CH4 emissions from PF were 646.3±52.1 and 215.0±45.4 kg CH4 hm^-2 during the rice-growing period and non-rice period, respectively. Both values were much lower than many previous reports from similar regions in Southwest China. The CH4 emissions in the rice-growing season were more intensive in PF, as compared to RW and RR. Only 33% of the total annual CH4 emission in PF occurred in the non-rice season, though the duration of this season is two times longer than the rice season. The annual mean N2O flux in PF was 4.5±0.6 kg N2O hm^-2 yr^-1. The N2O emission in the rice-growing season was also more intensive than in the non-rice season, with only 16% of the total annual emission occurring in the non-rice season. The amounts of N2O emission in PF were ignorable compared to the CH4 emission in terms of the global warming potential (GWP). Changing PF to RW or RR not only eliminated CH4 emissions in the non-rice season, but also substantially reduced the CH4 emission during the following rice-growing period (ca. 58%, P〈0.05). However, this change in cultivation system substantially increased N2O emissions, especially in the non-rice season, by a factor of 3.7 to 4.5. On the 100-year horizon, the integrated GWP of total annual CH4 and N2O emissions satisfies PF〉〉RR≈RW. The GWP of PF is higher than that of RW and RR by a factor of 2.6 and 2.7, respectively. Of the total GWP of CH4 and N2O emissions, CH4 emission contributed to 93%, 65% and 59% in PF, RW and RR, respectively. These results suggest that changing PF to RW and RR can substantially reduce not only CH4 emission but also the total GWP of the CH4 and N2O emissions.展开更多
The Government of the Lao PDR’s policy is to eliminate the cultivation of upland rice by means of ‘slash-and-burn’ cultivation and to replace it with more ecologically stable systems based on sustainable land use a...The Government of the Lao PDR’s policy is to eliminate the cultivation of upland rice by means of ‘slash-and-burn’ cultivation and to replace it with more ecologically stable systems based on sustainable land use at the village and household level. The objectives of this policy are to alleviate poverty and to introduce more sustainable management of agricultural resources. In order to achieve these objectives, the government has initiated a program of relocation to upland ‘focal areas’ from which marketing, distribution and other services can be supplied, these being essential preconditions for effective agricultural development in these regions. This diagnostic study has examined communal and household strategies for addressing food security issues, and has highlighted the main problems encountered in the pursuit of food security on the local level. The specific objective was to conduct a broadly focused participatory problem diagnosis of the study areas in two districts Phonsay and Namo, in order to understand farmers’ problems, livelihood goals and how their perspectives on food security have changed, and to investigate food security in shifting cultivation systems in Luang Prabang andOudomxay provinces. Within these two provinces Phonsay and Namo districts were selected as the research areas. The two districts are the poorest districts in the Luang Prabang and Oudomxay provinces and two of ten priority poorest districts in the whole country. Semi-structured interviews were conducted for the study. The results of this study were reviewed against the sustainable land use systems strategy formulated from the Lao PDR policy. The study highlights both the benefits and stresses on household welfare, food insecurity conditions in the study areas, and interrelated problems of insufficient rice for household consumption. Finally based on these results the authors propose recommendations and future research indications.展开更多
With autotrophic microalgae cultivation,?we can feed back the CO2?content of process streams and we can get lots of valuable organic compounds, among others biofuel components. For the production of energy source,we m...With autotrophic microalgae cultivation,?we can feed back the CO2?content of process streams and we can get lots of valuable organic compounds, among others biofuel components. For the production of energy source,we must reckon with the energy balance of the whole process. Densification and processing of microalgae can consume 50% - 70% of the energy that can be extracted from the cells,?therefore the cultivation should use such a little energy as it possible. In closed cultivation systems,?there are three main energy intensive steps: artificial illumination, dissolution of gas compounds and mixing. We have carried out our measurements in our lab-scale screening photobioreactor system for the investigation of the most energy effective program for aeration. We have found the aeration program considerable solution for lower energy consumption in?algae cultivation.展开更多
Flooded rice cultivation fields appear to be the major source of methane emission. In Benin Republic, flooded rice is cultivated in the Niger River and Ouémé River Basins. The present study aims to assess th...Flooded rice cultivation fields appear to be the major source of methane emission. In Benin Republic, flooded rice is cultivated in the Niger River and Ouémé River Basins. The present study aims to assess the contribution of flooded rice cultivation systems to methane emissions in the lower Ouémé Valley. Methane emission calculation was based on Activity Data which is the flooded rice harvested surface area from 2008 to 2017. The Tier 2 methodology of the IPCC 2006 Guidelines’ and the complements of the “Refinement 2019” have been used to elaborate the specific emission factors for the lower valley of Ouémé and to estimate the emission of methane in this zone. Semi-structured interviews were conducted with producers in order to elaborate on their perceptions of gas emissions in the flooded rice fields. The EX-ACT tool was used to estimate the carbon footprint of the intensive rice cultivation system “SRI” and the conventional rice cultivation system “SRC”. It is shown that producers have a strong perception of gas emissions in rice fields but are totally unaware of the nature of the gas. Methane emitted in the lower valley of the Ouémé is around 528 tons/year between 2008 and 2017 while the carbon footprint resulting from the results of EX-ACT for the adoption of the SRI rises to the level of sequestration of approximately 0.4 tCH4/ha/year. The intensive rice cultivation system has been identified as the production system that minimizes methane emissions and maximizes rice production.展开更多
In order to efficiently solve the shading problem between the upper layer and lower layer in the same cultivation system and between adjacent cultivation systems in multi-layer stereo-cultivation of strawberry,and to ...In order to efficiently solve the shading problem between the upper layer and lower layer in the same cultivation system and between adjacent cultivation systems in multi-layer stereo-cultivation of strawberry,and to improve the fixed A-frame system,a novel cultivation system-sun-tracking system was developed that could keep north-south line of cultivation frame parallel to sunray to make the best use of direct light.In this study,crop canopy light condition of sun-tracking and fixed systems were tested and compared.Results showed that integrated PPF of sun-tracking system is higher than that of fixed system in both middle and lower layers.On sunny day compared with fixed system,integrated PPF on middle and lower layer of suntracking system increased by 16.0%,9.1% in January and 19.6%,4.1% in February,while on cloudy day improvement on light condition of sun-tracking system is not evident as sunny days.Thus sun-tracking system can effectively alleviate shading problem between layers and improve plant canopy light environment.展开更多
Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this ...Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables.展开更多
Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical re...Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.展开更多
Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood...Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood.In this study,four rice varieties were produced in the field.Each variety was treated with six different cultivation techniques,including zero nitrogen application(0 N),local farmers’practice(LFP),nitrogen reduction(NR),and three progressive ICP techniques comprised of enhanced fertilizer N practice and increased plant density(ICP1),a treatment similar to ICP1 but with alternate wetting and moderate drying instead of continuous flooding(ICP2),and the same practices as ICP2 with the application of organic fertilizer(ICP3).The ICPs had greater grain production and nitrogen use efficiency than the other three methods.Root length,dry weight,root diameter,activity of root oxidation,root bleeding rate,zeatin and zeatin riboside compositions,and total organic acids in root exudates were elevated with the introduction of the successive cultivation practices.ICPs enhanced nitrate nitrogen,the activities of urease and invertase,and the diversity of microbes(bacteria)in rhizosphere and non-rhizosphere soil,while reducing the ammonium nitrogen content.The nutrient contents(ammonium nitrogen,total nitrogen,total potassium,total phosphorus,nitrate,and available phosphorus)and urease activity in rhizosphere soil were reduced in all treatments in comparison with the non-rhizosphere soil,but the invertase activity and bacterial diversity were greater.The main root morphology and physiology,and the ammonium nitrogen contents in rhizosphere soil at the primary stages were closely correlated with grain yield and internal nitrogen use efficiency.These findings suggest that the coordinated enhancement of the root system and the environment of the rhizosphere under integrative cultivation approaches may lead to higher rice production.展开更多
Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to underst...Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.展开更多
Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages,...Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.展开更多
It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cult...It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.展开更多
What type of entrepreneurial spirit is needed for China’s new era,and how can we unlock its innovation potential?Answers to these questions will unleash vital forces to drive China’s high-quality economic developmen...What type of entrepreneurial spirit is needed for China’s new era,and how can we unlock its innovation potential?Answers to these questions will unleash vital forces to drive China’s high-quality economic development.After reviewing the theories,dimensions,features,and limitations of the entrepreneurial spirit in the Western context,we concluded that the entrepreneurial spirit in China’s new era,which is characterized by patriotism,innovation,trustworthiness,adherence to the law,fulfillment of social responsibilities,and a global horizon,has overcome the limitations that come with self-interested entrepreneurship in the context of Western economics.This is a major step forward in the development of theories on entrepreneurial spirit.In the development context of the new era,this paper argues that the entrepreneurial spirit should become an important force at the individual level to implement the new development concept,foster the new development paradigm,and promote high-quality development in the new stage.This paper provides answers to the question of what type of entrepreneurial spirit China’s new era requires.Finally,this paper presents basic strategies for cultivating entrepreneurial spirit in the context of China’s new era,emphasizing the importance to promote the healthy growth of young entrepreneurs,ensure their business autonomy,develop a multi-tiered capital market,implement the factor market reforms,improve the business climate,and accelerate the digital transition.展开更多
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon...The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.展开更多
In order to comply with the development trend of the multifunctional use of peppers,we conducted an investigation into the characteristics and features of varieties,potting management techniques,and the methods of ext...In order to comply with the development trend of the multifunctional use of peppers,we conducted an investigation into the characteristics and features of varieties,potting management techniques,and the methods of extending the fruit ornamental period and other aspects of courtyard ornamental and edible peppers.A set of cultivation techniques suitable for courtyard ornamental and edible peppers has been developed,including timely sowing and seedling,nutrient soil preparation,water and fertilizer management,trimming and pruning,preservation of flowers and fruits,green prevention and control of diseases and pests,harvesting,and so on.展开更多
In order to enhance the yield and quality of cashew,it is essential to implement high-yield cultivation techniques effectively throughout the production process.Additionally,pest control measures should be employed to...In order to enhance the yield and quality of cashew,it is essential to implement high-yield cultivation techniques effectively throughout the production process.Additionally,pest control measures should be employed to provide technical support for the industrialized development of cashew.展开更多
Objective: The cultivation of the innovation ability and scientific research is one of the nursing learning objectives for undergraduate students. To explore the method and effect of training system of scientific rese...Objective: The cultivation of the innovation ability and scientific research is one of the nursing learning objectives for undergraduate students. To explore the method and effect of training system of scientific research innovation ability of nursing undergraduates based on “3332”. Methods: Three course learning modules are constructed: stage-based course learning module, systematic project practice training module and comprehensive practice training module. A practical training platform for scientific research innovation projects is built, and undergraduate scientific research innovation ability training is carried out from both in-class and out-of-class lines. Results: Since 2017, the students have obtained 7 national innovation and entrepreneurship training programs, 52 university-level undergraduate scientific research projects, published more than 10 academic papers, and obtained 2 patent authorization. Conclusions: The training system of scientific research innovation ability of nursing undergraduates based on “3332” is conducive to the development of scientific research innovation ability of nursing students, and to cultivate nursing talents who can adapt to the development of the new era and have better post competence.展开更多
Strawberry (Fragaria spp.) is one of the most important fruits classified as exotic fruits imported into Cameroon. To have an inventory of its cultivation in Cameroon, a survey study was carried out among eight farms ...Strawberry (Fragaria spp.) is one of the most important fruits classified as exotic fruits imported into Cameroon. To have an inventory of its cultivation in Cameroon, a survey study was carried out among eight farms of Fragaria spp. from January 2021 to February 2022. The plant was introduced in Cameroon in 2018. There are 13 varieties of Fragaria spp. currently cultivated. Among these 13 varieties, eleven are hybrids of Fragaria x ananassa (“Amiga”, “Amine”, “Camarosa”, “Chandler”, “Charlotte”, “Elsanta”, “Gariguette”, “Madame Moutot”, “Ostara”, “Ruby gem” and “San Andreas”), and two of the hybrids of Fragaria vesca (“Maestro” and “Mara des bois”). The cropping system, irrigation system, and type of fertilizers applied differ from one strawberry farm to another. Biofertilizers (such as mycorrhizal), inorganic and organic fertilizers are actually used to improve production. The potential annual production of strawberries from January 2021 to February 2022, estimated based on the survey data, was 21.216 tons for all growers. Among these eight production farms, the Lolodorf BIO Farm presents 6000 kg (six tons) of strawberries and 100,000 stolons (seedlings) produced, from seven varieties of Fragaria spp. cultivated, with 6 varieties which are hybrids variety Fragaria x ananassa (“Amiga”, “Amine”, “Chandler”, “Gariguette”, “Madame Moutot”, and “Ruby gem”), and one which is a hybrid of Fragaria vesca (“Mara des bois”). Certain diseases were also observed and recorded depending on the growing areas.展开更多
Polycarbonate plastics containing bisphenol A (BPA) used to manufacture drinking water bottles. Kurdistan region in northern Iraq is a developed area with increased pollution from plastic bottles. Trace amounts of BPA...Polycarbonate plastics containing bisphenol A (BPA) used to manufacture drinking water bottles. Kurdistan region in northern Iraq is a developed area with increased pollution from plastic bottles. Trace amounts of BPA have been detected in bottled water samples. The absorption of BPA was measured with HPLC using a vertical cultivation system with Bulbs of the Allium Cepa plant planted in these plastic bottles with monitored growth. Vertical cultivation was found to have a low level of BPA in the plant cells, making it a safe cultivation method under specific climate conditions. The mean concentration of BPA in vertical cultivation is 0.19 ug/ml (3.8 ng for a 20 uL injection), and the Limit of Quantification (LOQ) is 0.63 ug/ml (12.7 ng for 20 uL injection). While Scanning Electron Microscope (SEM) shows that the concentrations are relatively low in water samples stored at room temperature compared to those exposed to direct sunlight (40°C) and water bottle samples stored at (-4°C), The correlation coefficients were found to be good (0.9992). SEM is used for plastic bottle samples stored at different temperatures. The images identify compound decay and explore the morphology of BPA in manufactured plastic materials.展开更多
Tobacco is an essential cash crop in Zimbabwe and a strategic livelihood option for hundreds of thousands of rural households. However, the crop is linked to negative environmental, economic, and social impacts. The e...Tobacco is an essential cash crop in Zimbabwe and a strategic livelihood option for hundreds of thousands of rural households. However, the crop is linked to negative environmental, economic, and social impacts. The existing studies on tobacco cultivation in Zimbabwe present contradictory findings on the determinants and impacts of adoption, leaving unanswered questions about the crop’s sustainability impact in the country. This article investigates the determinants of smallholder farmers’ decisions to grow tobacco and the associated impacts of adoption. Random and purposive sampling were used to select 273 household surveys, including tobacco and non-tobacco smallholder farmers, and 56 expert interviews to answer the research questions. We employed regression models alongside expert interviews and document analysis to identify the determinants influencing the decision-making process of smallholder farmers in Zimbabwe regarding tobacco cultivation. Additionally, our investigation aimed to elucidate the perceived impacts associated with the adoption of this agricultural practice. The regression analysis indicated that the farmer’s age, education level, farming experience, family size, household income, and perceived high farm profitability are significant drivers of tobacco adoption. We also discovered divergent and convergent perceptions of the critical impacts of tobacco cultivation. The study highlights the need for proactive multi-stakeholder collaboration and sustainable financial arrangements to address the negative impacts of tobacco production. As the primary stakeholder responsible for regulating and promoting agricultural activities, the Zimbabwean government should provide meaningful financial support, increase access to credit, and ensure better market facilities for alternative crops to reduce the over-dependence on tobacco.展开更多
文摘Background The critical period of weed control(CPWC) refers to the period of time during the crop growth cycle when weeds must be controlled to prevent yield losses.Ultra-narrow row(UNR) is a method of planting of cotton in rows that are 25 cm or less apart.Amongst cultural techniques for weed control,the use of narrow row spacing is considered to be a most promising approach that can effectively suppress weed growth and provide greater yields in cotton.This cultivation system can shorten the length of the critical weed-crop interference duration and results in greater yield.The current research aimed to determination of critical time of weed control in cotton(Gossypium hirsutum L.) under conventional and ultra-narrow row spacing conditions.Field experiments were arranged as factorial experiment in a randomized complete block design with three replications.Factors were cultivation system(conventional(50 cm row spacing) and ultra narrow row(25 cm row spacing and weed treatment including 30,45,60,and 75 days weeding after emergence during the growing season(weed free),and 30,45,60,and 75 without weeding(weed infested) in the growing season along with weedy and weed-free from sowing to harvesting.A four-parameter loglogistic model was fit to the two sets of relating relative crop yield to data obtained from increasing durations of weed interference and lengths of weed-free period.Results In both years and cultivation systems,the relative yield of cotton decreased with the increasing duration of weed-interference but increased with the increasing duration of weed-free period.Ultra-narrow row cultivation delayed the beginning of the CPWC in cotton.Under ultra-narrow row condition,the CPWC ranged from 21 to 99 days after germination in 2021 and 23 to 91 days in 2022 based on the 5% acceptable yield loss.Under conventional cultivation CPWC ranged from 17 to 102 days after emergence in 2021 and 18 to 95 days after emergence in 2022.Conclusions Under both conventional and Ultra-narrow row conditions,weed interference reduces seed yield.Under ultra-narrow row condition,weed interference until 21.1–23.5 days after cotton emergence and under conventional condition,weed interference until 16.9–18.5 days after cotton emergence had not significant reduction on cotton yield.
文摘To understand methane (CH4) and nitrous oxide (N2O) emissions from permanently flooded rice paddy fields and to develop mitigation options, a field experiment was conducted in situ for two years (from late 2002 to early 2005) in three rice-based cultivation systems, which are a permanently flooded rice field cultivated with a single time and followed by a non-rice season (PF), a rice-wheat rotation system (RW) and a rice-rapeseed rotation system (RR) in a hilly area in Southwest China. The results showed that the total CH4 emissions from PF were 646.3±52.1 and 215.0±45.4 kg CH4 hm^-2 during the rice-growing period and non-rice period, respectively. Both values were much lower than many previous reports from similar regions in Southwest China. The CH4 emissions in the rice-growing season were more intensive in PF, as compared to RW and RR. Only 33% of the total annual CH4 emission in PF occurred in the non-rice season, though the duration of this season is two times longer than the rice season. The annual mean N2O flux in PF was 4.5±0.6 kg N2O hm^-2 yr^-1. The N2O emission in the rice-growing season was also more intensive than in the non-rice season, with only 16% of the total annual emission occurring in the non-rice season. The amounts of N2O emission in PF were ignorable compared to the CH4 emission in terms of the global warming potential (GWP). Changing PF to RW or RR not only eliminated CH4 emissions in the non-rice season, but also substantially reduced the CH4 emission during the following rice-growing period (ca. 58%, P〈0.05). However, this change in cultivation system substantially increased N2O emissions, especially in the non-rice season, by a factor of 3.7 to 4.5. On the 100-year horizon, the integrated GWP of total annual CH4 and N2O emissions satisfies PF〉〉RR≈RW. The GWP of PF is higher than that of RW and RR by a factor of 2.6 and 2.7, respectively. Of the total GWP of CH4 and N2O emissions, CH4 emission contributed to 93%, 65% and 59% in PF, RW and RR, respectively. These results suggest that changing PF to RW and RR can substantially reduce not only CH4 emission but also the total GWP of the CH4 and N2O emissions.
文摘The Government of the Lao PDR’s policy is to eliminate the cultivation of upland rice by means of ‘slash-and-burn’ cultivation and to replace it with more ecologically stable systems based on sustainable land use at the village and household level. The objectives of this policy are to alleviate poverty and to introduce more sustainable management of agricultural resources. In order to achieve these objectives, the government has initiated a program of relocation to upland ‘focal areas’ from which marketing, distribution and other services can be supplied, these being essential preconditions for effective agricultural development in these regions. This diagnostic study has examined communal and household strategies for addressing food security issues, and has highlighted the main problems encountered in the pursuit of food security on the local level. The specific objective was to conduct a broadly focused participatory problem diagnosis of the study areas in two districts Phonsay and Namo, in order to understand farmers’ problems, livelihood goals and how their perspectives on food security have changed, and to investigate food security in shifting cultivation systems in Luang Prabang andOudomxay provinces. Within these two provinces Phonsay and Namo districts were selected as the research areas. The two districts are the poorest districts in the Luang Prabang and Oudomxay provinces and two of ten priority poorest districts in the whole country. Semi-structured interviews were conducted for the study. The results of this study were reviewed against the sustainable land use systems strategy formulated from the Lao PDR policy. The study highlights both the benefits and stresses on household welfare, food insecurity conditions in the study areas, and interrelated problems of insufficient rice for household consumption. Finally based on these results the authors propose recommendations and future research indications.
文摘With autotrophic microalgae cultivation,?we can feed back the CO2?content of process streams and we can get lots of valuable organic compounds, among others biofuel components. For the production of energy source,we must reckon with the energy balance of the whole process. Densification and processing of microalgae can consume 50% - 70% of the energy that can be extracted from the cells,?therefore the cultivation should use such a little energy as it possible. In closed cultivation systems,?there are three main energy intensive steps: artificial illumination, dissolution of gas compounds and mixing. We have carried out our measurements in our lab-scale screening photobioreactor system for the investigation of the most energy effective program for aeration. We have found the aeration program considerable solution for lower energy consumption in?algae cultivation.
文摘Flooded rice cultivation fields appear to be the major source of methane emission. In Benin Republic, flooded rice is cultivated in the Niger River and Ouémé River Basins. The present study aims to assess the contribution of flooded rice cultivation systems to methane emissions in the lower Ouémé Valley. Methane emission calculation was based on Activity Data which is the flooded rice harvested surface area from 2008 to 2017. The Tier 2 methodology of the IPCC 2006 Guidelines’ and the complements of the “Refinement 2019” have been used to elaborate the specific emission factors for the lower valley of Ouémé and to estimate the emission of methane in this zone. Semi-structured interviews were conducted with producers in order to elaborate on their perceptions of gas emissions in the flooded rice fields. The EX-ACT tool was used to estimate the carbon footprint of the intensive rice cultivation system “SRI” and the conventional rice cultivation system “SRC”. It is shown that producers have a strong perception of gas emissions in rice fields but are totally unaware of the nature of the gas. Methane emitted in the lower valley of the Ouémé is around 528 tons/year between 2008 and 2017 while the carbon footprint resulting from the results of EX-ACT for the adoption of the SRI rises to the level of sequestration of approximately 0.4 tCH4/ha/year. The intensive rice cultivation system has been identified as the production system that minimizes methane emissions and maximizes rice production.
基金Supported by National Science and Technology Plan Project"Five"in Rural Areas--Plant Factory Perspective Multilayer Cultivation System and Its Key Technology and Equipment Research(2013AA103002)Modern Agricultural Industry Technology System Construction Special(CARS-25-06B)
文摘In order to efficiently solve the shading problem between the upper layer and lower layer in the same cultivation system and between adjacent cultivation systems in multi-layer stereo-cultivation of strawberry,and to improve the fixed A-frame system,a novel cultivation system-sun-tracking system was developed that could keep north-south line of cultivation frame parallel to sunray to make the best use of direct light.In this study,crop canopy light condition of sun-tracking and fixed systems were tested and compared.Results showed that integrated PPF of sun-tracking system is higher than that of fixed system in both middle and lower layers.On sunny day compared with fixed system,integrated PPF on middle and lower layer of suntracking system increased by 16.0%,9.1% in January and 19.6%,4.1% in February,while on cloudy day improvement on light condition of sun-tracking system is not evident as sunny days.Thus sun-tracking system can effectively alleviate shading problem between layers and improve plant canopy light environment.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400202133157A-0-0-00)partially supported by the State Grid Gansu Electric Power Company,China。
文摘Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables.
文摘Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.
基金supported by the National Key Research and Development Program of China (2022YFD2300304)the National Natural Science Foundation of China (32071944 and 32272197)+2 种基金the Hong Kong Research Grants Council, China (GRF 14177617, 12103219, 12103220, and AoE/M-403/16)the State Key Laboratory of Agrobiotechnology (Strategic Collaborative Projects) in The Chinese University of Hong Kong, China, the Six Talent Peaks Project in Jiangsu Province, China (SWYY151)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD).
文摘Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood.In this study,four rice varieties were produced in the field.Each variety was treated with six different cultivation techniques,including zero nitrogen application(0 N),local farmers’practice(LFP),nitrogen reduction(NR),and three progressive ICP techniques comprised of enhanced fertilizer N practice and increased plant density(ICP1),a treatment similar to ICP1 but with alternate wetting and moderate drying instead of continuous flooding(ICP2),and the same practices as ICP2 with the application of organic fertilizer(ICP3).The ICPs had greater grain production and nitrogen use efficiency than the other three methods.Root length,dry weight,root diameter,activity of root oxidation,root bleeding rate,zeatin and zeatin riboside compositions,and total organic acids in root exudates were elevated with the introduction of the successive cultivation practices.ICPs enhanced nitrate nitrogen,the activities of urease and invertase,and the diversity of microbes(bacteria)in rhizosphere and non-rhizosphere soil,while reducing the ammonium nitrogen content.The nutrient contents(ammonium nitrogen,total nitrogen,total potassium,total phosphorus,nitrate,and available phosphorus)and urease activity in rhizosphere soil were reduced in all treatments in comparison with the non-rhizosphere soil,but the invertase activity and bacterial diversity were greater.The main root morphology and physiology,and the ammonium nitrogen contents in rhizosphere soil at the primary stages were closely correlated with grain yield and internal nitrogen use efficiency.These findings suggest that the coordinated enhancement of the root system and the environment of the rhizosphere under integrative cultivation approaches may lead to higher rice production.
基金the National Key Research and Development Program of China(2017YFD0800102)the Hubei Provincial Key Research and Development Program,China(2021BCA156)。
文摘Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.
基金financially supported by the National Key Research & Development Program of China (Grant No.2022YFD1500402)the National Natural Science Foundation of China (Grant No.51809225)+1 种基金the China Postdoctoral Science Foundation (Grant Nos.2020T130559 and 2019M651977)the Natural Science Foundation of Jiangsu Province, China (Grant No.BK20180929)。
文摘Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.
基金Under the auspices of National Natural Science Foundation of China(No.42301296)Postdoctoral Research Foundation of China(No.2022M723130)Key Projects of Social Science Planning Fund of Liaoning Province,China(No.L23AGL001)。
文摘It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.
基金supported by the General Project of the National Social Science Fund of China(NSSFC)(Grant No.23BJY049)the General Project of Philosophical and Social Planning for Gansu Province(Grant No.2022YB007)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.21lzujbkydx028)National Statistical Science Research Key project(Grant No.2024LZ013).
文摘What type of entrepreneurial spirit is needed for China’s new era,and how can we unlock its innovation potential?Answers to these questions will unleash vital forces to drive China’s high-quality economic development.After reviewing the theories,dimensions,features,and limitations of the entrepreneurial spirit in the Western context,we concluded that the entrepreneurial spirit in China’s new era,which is characterized by patriotism,innovation,trustworthiness,adherence to the law,fulfillment of social responsibilities,and a global horizon,has overcome the limitations that come with self-interested entrepreneurship in the context of Western economics.This is a major step forward in the development of theories on entrepreneurial spirit.In the development context of the new era,this paper argues that the entrepreneurial spirit should become an important force at the individual level to implement the new development concept,foster the new development paradigm,and promote high-quality development in the new stage.This paper provides answers to the question of what type of entrepreneurial spirit China’s new era requires.Finally,this paper presents basic strategies for cultivating entrepreneurial spirit in the context of China’s new era,emphasizing the importance to promote the healthy growth of young entrepreneurs,ensure their business autonomy,develop a multi-tiered capital market,implement the factor market reforms,improve the business climate,and accelerate the digital transition.
基金Supported by Key Scientific Research Project in Colleges and Universities of Henan Province(22B180011)Project of Henan Provincial Department of Science and Technology(232102320262)+1 种基金Education and Teaching Reform Research Project of Pingdingshan University(2021-JY55)Key Demonstration Course of Pingdingshan University in 2022——Comprehensive Experiment of Environmental Biology.
文摘The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.
基金Supported by Changsha Science and Technology Program"Changsha Vegetable Science Popularization Base"Hunan High-tech Industry Science and Technology Innovation Leading Program"Innovation and Demonstration of Modern Green Building Aerial Ecological Courtyard Technology"(2022GK4065).
文摘In order to comply with the development trend of the multifunctional use of peppers,we conducted an investigation into the characteristics and features of varieties,potting management techniques,and the methods of extending the fruit ornamental period and other aspects of courtyard ornamental and edible peppers.A set of cultivation techniques suitable for courtyard ornamental and edible peppers has been developed,including timely sowing and seedling,nutrient soil preparation,water and fertilizer management,trimming and pruning,preservation of flowers and fruits,green prevention and control of diseases and pests,harvesting,and so on.
基金Supported by 2024 Major Facility System Operating Costs of Ministry of Agriculture and Rural Affairs"Ledong Cashew Germplasm Resource Nursery Operating Cost of Ministry of Agriculture and Rural Affairs"2023-2024 Agricultural Germplasm Resource Conservation Project"Research on Collection,Conservation and Utilization of Cashew Germplasm Resources".
文摘In order to enhance the yield and quality of cashew,it is essential to implement high-yield cultivation techniques effectively throughout the production process.Additionally,pest control measures should be employed to provide technical support for the industrialized development of cashew.
文摘Objective: The cultivation of the innovation ability and scientific research is one of the nursing learning objectives for undergraduate students. To explore the method and effect of training system of scientific research innovation ability of nursing undergraduates based on “3332”. Methods: Three course learning modules are constructed: stage-based course learning module, systematic project practice training module and comprehensive practice training module. A practical training platform for scientific research innovation projects is built, and undergraduate scientific research innovation ability training is carried out from both in-class and out-of-class lines. Results: Since 2017, the students have obtained 7 national innovation and entrepreneurship training programs, 52 university-level undergraduate scientific research projects, published more than 10 academic papers, and obtained 2 patent authorization. Conclusions: The training system of scientific research innovation ability of nursing undergraduates based on “3332” is conducive to the development of scientific research innovation ability of nursing students, and to cultivate nursing talents who can adapt to the development of the new era and have better post competence.
文摘Strawberry (Fragaria spp.) is one of the most important fruits classified as exotic fruits imported into Cameroon. To have an inventory of its cultivation in Cameroon, a survey study was carried out among eight farms of Fragaria spp. from January 2021 to February 2022. The plant was introduced in Cameroon in 2018. There are 13 varieties of Fragaria spp. currently cultivated. Among these 13 varieties, eleven are hybrids of Fragaria x ananassa (“Amiga”, “Amine”, “Camarosa”, “Chandler”, “Charlotte”, “Elsanta”, “Gariguette”, “Madame Moutot”, “Ostara”, “Ruby gem” and “San Andreas”), and two of the hybrids of Fragaria vesca (“Maestro” and “Mara des bois”). The cropping system, irrigation system, and type of fertilizers applied differ from one strawberry farm to another. Biofertilizers (such as mycorrhizal), inorganic and organic fertilizers are actually used to improve production. The potential annual production of strawberries from January 2021 to February 2022, estimated based on the survey data, was 21.216 tons for all growers. Among these eight production farms, the Lolodorf BIO Farm presents 6000 kg (six tons) of strawberries and 100,000 stolons (seedlings) produced, from seven varieties of Fragaria spp. cultivated, with 6 varieties which are hybrids variety Fragaria x ananassa (“Amiga”, “Amine”, “Chandler”, “Gariguette”, “Madame Moutot”, and “Ruby gem”), and one which is a hybrid of Fragaria vesca (“Mara des bois”). Certain diseases were also observed and recorded depending on the growing areas.
文摘Polycarbonate plastics containing bisphenol A (BPA) used to manufacture drinking water bottles. Kurdistan region in northern Iraq is a developed area with increased pollution from plastic bottles. Trace amounts of BPA have been detected in bottled water samples. The absorption of BPA was measured with HPLC using a vertical cultivation system with Bulbs of the Allium Cepa plant planted in these plastic bottles with monitored growth. Vertical cultivation was found to have a low level of BPA in the plant cells, making it a safe cultivation method under specific climate conditions. The mean concentration of BPA in vertical cultivation is 0.19 ug/ml (3.8 ng for a 20 uL injection), and the Limit of Quantification (LOQ) is 0.63 ug/ml (12.7 ng for 20 uL injection). While Scanning Electron Microscope (SEM) shows that the concentrations are relatively low in water samples stored at room temperature compared to those exposed to direct sunlight (40°C) and water bottle samples stored at (-4°C), The correlation coefficients were found to be good (0.9992). SEM is used for plastic bottle samples stored at different temperatures. The images identify compound decay and explore the morphology of BPA in manufactured plastic materials.
文摘Tobacco is an essential cash crop in Zimbabwe and a strategic livelihood option for hundreds of thousands of rural households. However, the crop is linked to negative environmental, economic, and social impacts. The existing studies on tobacco cultivation in Zimbabwe present contradictory findings on the determinants and impacts of adoption, leaving unanswered questions about the crop’s sustainability impact in the country. This article investigates the determinants of smallholder farmers’ decisions to grow tobacco and the associated impacts of adoption. Random and purposive sampling were used to select 273 household surveys, including tobacco and non-tobacco smallholder farmers, and 56 expert interviews to answer the research questions. We employed regression models alongside expert interviews and document analysis to identify the determinants influencing the decision-making process of smallholder farmers in Zimbabwe regarding tobacco cultivation. Additionally, our investigation aimed to elucidate the perceived impacts associated with the adoption of this agricultural practice. The regression analysis indicated that the farmer’s age, education level, farming experience, family size, household income, and perceived high farm profitability are significant drivers of tobacco adoption. We also discovered divergent and convergent perceptions of the critical impacts of tobacco cultivation. The study highlights the need for proactive multi-stakeholder collaboration and sustainable financial arrangements to address the negative impacts of tobacco production. As the primary stakeholder responsible for regulating and promoting agricultural activities, the Zimbabwean government should provide meaningful financial support, increase access to credit, and ensure better market facilities for alternative crops to reduce the over-dependence on tobacco.