BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) ...BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration.展开更多
BACKGROUND: Exogenous neural stem cell transplantation promotes neural regeneration. However, various types of stem cells transplantation outcomes remain controversial. OBJECTIVE: To explore distribution, proliferat...BACKGROUND: Exogenous neural stem cell transplantation promotes neural regeneration. However, various types of stem cells transplantation outcomes remain controversial. OBJECTIVE: To explore distribution, proliferation and differentiation of human neural stem cells (hNSCs) and human umbilical cord blood stem cells (hUCBSCs) following transplantation in ischemic brain tissue of rats, and to compare therapeutic outcomes between hNSCs and hUCBSCs. DESIGN, TIME AND SETTING: Randomized controlled animal studies were performed at the Experimental Animal Center of Nanjing Medical University and Central Laboratory of Second Affiliated Hospital of Nanjing Medical University of China from September 2008 to April 2009. MATERIALS: hNSCs were harvested from brain tissue of 10 13 week old fetuses following spontaneous abortion, and hUCBSCs were collected from umbilical cord blood of full-term newborns at the Second Affiliated Hospital of Nanjing Medical University of China. hNSCs and hUCBSCs were labeled by 5-bromodeoxyuridine (BrdU) prior to transplantation. METHODS: Rat models of cerebral ischemia were established by the suture method. A total of 60 healthy male Sprague Dawley rats aged 7-9 weeks were randomly assigned to hNSC transplantation, hUCBSC transplantation and control groups. The rat models in the hNSC transplantation, hUCBSC transplantation and control groups were infused with hNSC suspension, hUCBSC suspension and saline via the caudal vein, respectively. MAIN OUTCOME MEASURES: The distribution, proliferation and differentiation of hNSCs and hUCBSCs in ischemic brain tissue were observed using immunohistochemical methods. Neurological function in rats was assessed using the neurological severity score. RESULTS: The number of BrdU-positive cells was significantly greater in the hNSC transplantation group compared with hUCBSC transplantation group at 14 days following transplantation (P 〈 0.05) The number of BrdU-positive cells reached a peak at 28 days following transplantation. Nestin-positive, glial fibrillary acidic protein-positive, cyclic nucleotide 3' phosphohydrolase-positive and neuron specific enolase-positive cells were visible following transplantation. No significant difference was determined in the constituent ratio of various cells between hNSC and hUCBSC transplantation groups (P 〉 0.05). The neurological severity score was significantly decreased in rats at 21 days following transplantation (P 〈 0.05). No significant difference was detected in neurological severity score between hNSC and hUCBSC transplantation groups at various time points (P 〉 0.05). CONCLUSION: The transplanted hNSCs and hUCBSCs can migrate into ischemic brain tissue, proliferate and differentiate into neuron-like, astrocyte-like and oligodendrocyte-like cells, and improve neurological function in rats with cerebral ischemia.展开更多
AIM: To study the condition and potentiality of human umbilical cord blood stem cells (HUCBSC) to differentiate into hepatocytes in vivo or in vitro. METHODS: In a cell culture study of human umbilical cord blood ...AIM: To study the condition and potentiality of human umbilical cord blood stem cells (HUCBSC) to differentiate into hepatocytes in vivo or in vitro. METHODS: In a cell culture study of human umbilical cord blood stem cell (HUCBSC) differentiation, human umbilical cord blood mononuclear cells (HUCBMNC) were separated by density gradient centrifugation. Fibroblast growth factor (FGF) and hepatocyte growth factor (HGF) and the supernatant of fetal liver were added in the inducing groups. Only FGF was added in the control group. The expansion and differentiation of HUCBMNC in each group were observed. Human alpha fetoprotein (AFP) and albumin (ALB) were detected by immunohistochemistry. In the animal experiments, the survival SD rats with acute hepatic injury after carbon tetrachloride (CCL4) injection 48 h were randomly divided into three groups. The rats in group A were treated with human umbilical cord blood serum. The rats in group B were treated with HUCBMNC transplantation. The rats in group C were treated with HUCBMNC transplantation followed by intraperitoneal cyclophosphamide for 7 d. The rats were killed at different time points after the treatment and the liver tissue was histopathologically studied and human AFP and ALB detected by immunohistochemistry. The human X inactive-specific transcript gene fragment in the liver tissue was amplified by PCR to find human DNA. RESULTS: The results of cell culture showed that adherent cells were stained negative for AFP or ALB in control group. However, the adherent cells in the inducing groups stained positive for AFP or ALB. The result of animal experiment showed that no human AFP or ALB positive cells present in the liver tissue of group A (control group). However, many human AFP or ALB positive cells were scattered around sinus hepaUcus and the central veins of hepatic Iobules and in the portal area in group B and group C after one month. The fragment of human X chromagene could be detected in the liver tissue of groups B and C, but not in group A.CONCLUSION: Under certain conditions HUCBSC can differentiate into liver cells in vivo and in vitro.展开更多
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated arou...In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.展开更多
BACKGROUND: Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity. OBJECTIVE: To investigate isolation and in vitro cultivation methods of human cord...BACKGROUND: Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity. OBJECTIVE: To investigate isolation and in vitro cultivation methods of human cord blood MSCs, to observe expression of neural stem cell (NSC) marker mRNA under induction, and to detect tumorigenicity in animals. DESIGN, TIME AND SETTING: A cell biological, in vitro trial and a randomized, controlled, in vivo experiment were performed at the Department of Neurology, Daping Hospital at the Third Military Medical University of Chinese PLA from August 2006 to May 2008. MATERIALS: Umbilical cord blood was collected from full-term-delivery fetus at the Department of Gynecology and Obstetrics of Daping Hospital, China. Eighteen BALB/C nu/nu nude mice were randomly assigned to three groups: back subcutaneous, cervical subcutaneous, and control, with 6 mice in each group. METHODS: Monocytes were isolated from heparinized human cord blood samples by density gradient centrifugation and then adherent cultivated in vitro to obtain MSC clones. After the cord blood MSCs were cultured for 7 days with nerve growth factor and retinoic acid to induce differentiation into NSCs, the cells (adjusted density of 1 × 10^7/mL) were prepared into cell suspension. In the back subcutaneous and cervical subcutaneous groups, nude mice were hypodermically injected with a 0.5-mL cell suspension into the back and cervical regions, respectively. In the control group, nude mice received a subcutaneous injection of 0.5 mL physiological saline into the back or cervical regions, respectively. MAIN OUTCOME MEASURES: Cellular morphology was observed by inverted microscopy, cultured cord blood MSCs were examined by flow cytometry, expression of nestin and musashi-1 mRNA was detected by reverse-transcriptase polymerase chain reaction prior to and after induction, and tumorigenicity following cord blood MSC transplantation was assayed by hematoxylin-eosin staining. RESULTS: Following adherent cultivation, the majority of cord blood monocytes became rhombic and strongly expressed CD29, but not CD34, CD1 la, or CD11 b. These results supported previously known characteristics of cord blood MSCs. Following differentiation induction, nestin and musashi-1 were expressed on the surface of NSCs, exhibiting strongest expression at 48 hours, and subsequently reducing expression. Cultured cord blood MSCs were not tumorigenic in the nude mice. Cellular morphology displayed no malignant changes between the control and subcutaneous groups. CONCLUSION: MSCs can be isolated from human cord blood, efficiently expanded under culture conditions, differentiated into NSCs following induction, and display no tumorigenicity in nude mice.展开更多
BACKGROUND: Transplanted mononuclear cell (MNC) of umbilical blood can survive in central nervous system (CNS) of host through blood brain barrier, differentiate into nerve cells, migrate to damaged site and integrate...BACKGROUND: Transplanted mononuclear cell (MNC) of umbilical blood can survive in central nervous system (CNS) of host through blood brain barrier, differentiate into nerve cells, migrate to damaged site and integrate morphological structure and function with nerve cells of host so as to improve deficiencies of sensatory function, motor function and cognitive function and influence on stroke sequela. OBJECTIVE: To observe the vein transplantation of human umbilical cord blood stem cells (HUCBSC) for improving neurological function, limb function and activity of daily living of patients with stroke and evaluate the reliability. DESIGN: Self-controlled study. SETTING: Department of Neurosurgery, the Second People's Hospital of Zhengzhou City; Red-crossed Blood Center of Henan Province; Department of Neurosurgery, the Fist Affiliated Hospital of Zhengzhou University. PARTICIPANTS: A total of 10 patients with stroke sequela were selected from Department of Cerebral Surgery, the Second People's Hospital of Zhengzhou City from April to December 2005. There were 9 males and 1 female aged from 35 to 75 years with the mean age of 56 years. All of them were diagnosed with CT and MRI examination and coincidence with diagnostic criteria of stroke established by the Fourth National Academic Meeting for Cerebrovascular Disease. All patients provided informed consent. METHODS: 80-140 mL umbilical blood of term birth of newborn was selected hermetically and maintained in sterile plastic bag. And then, the blood was centrifugated at the speed of 1 500 r/min for 30 minutes at 22 ℃ in order to separate MNC, i.e., HUCBSC. In addition, after final diagnosis during hospitalization, stroke patients were perfused with HUCBSC through superficial vein of back of the hand. Each patient was averagely perfused with 6 portions of HUCBSC (cellular numbers ≥ 1×108/portion) and the interval between each portion was 1-7 days with the mean interval of 4 days. MAIN OUTCOME MEASURES: ① Neurological function of stroke patients was evaluated with neurological function deficiency (NFD) before treatment and at 3 months after treatment. The scale includes consciousness, level fix function, facial paralysis, language, muscle force of upper limbs, muscle force of lower limb and step function. The total scores ranged from 0 to 45; meanwhile, the lower the scores were, the better the neurological function was. ② Motor function of injured limbs was evaluated with Fugl-Meyer Assessment (FMA), including motor function of upper limbs, motor function of lower limbs, balance ability, sensory function and motion of joint. The total scores ranged from 0 to 226; meanwhile, the higher the scores were, the better the motor function of limbs was. ③ Activities of daily living (ADL) was evaluated with Barthel Index (BI), including having meals, taking a bath, dressing oneself, putting on clothes, walking in balance and stair activity. The total scores ranged from 0 to 100; meanwhile, the higher the scores were, the stronger the ADL was. RESULTS: A total of 10 patients were involved in the final analysis. After treatment, NFD of stroke patients was (10.9±5.09) points, which was lower than that before treatment [(25.4±6.09) points, t =8.213, P < 0.01]. In addition, after treatment, FMA and BI of stroke patients were (80.9±25.00) points and (81.1±15.93) points, respectively, which were higher than those before treatment [(31.9±21.85) points, (36.2±19.41) points, t =13.024, 13.670, P < 0.01]. Immuno-suppressive drugs were not used during the whole therapeutic procedure; moreover, immunological rejection and allergic reaction were not observed during the same period. CONCLUSION: Transplanting HUCBSC through superficial vein of back of the hand is regarded as a simple and safe method for the treatment of stroke sequela.展开更多
Umbilical cord blood(UCB)is a primitive and abundant source of mesenchymal stem cells(MSCs).UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders.Despite the high lat...Umbilical cord blood(UCB)is a primitive and abundant source of mesenchymal stem cells(MSCs).UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders.Despite the high latent selfrenewal and differentiation capacity of these cells,the safety,efficacy,and yield of MSCs expanded for ex vivo clinical applications remains a concern.However,immunomodulatory effects have emerged in various disease models,exhibiting specific mechanisms of action,such as cell migration and homing,angiogenesis,anti-apoptosis,proliferation,anti-cancer,anti-fibrosis,anti-inflammation and tissue regeneration.Herein,we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies,and discuss the concerns regarding the safety and mass production issues in future applications.展开更多
The feasibility of using cord blood mesenchymal stem/progenitor cells (CB-MSPCs) to regenerate cardiomyocytes and the optimal inducing conditions were investigated. The CB mononuclear cells were cultured in low serum ...The feasibility of using cord blood mesenchymal stem/progenitor cells (CB-MSPCs) to regenerate cardiomyocytes and the optimal inducing conditions were investigated. The CB mononuclear cells were cultured in low serum DMEM medium to produce an adherent layer. After expansion, the adherent cells were added into cardiomyocyte inducing medium supplemented with 5-azacytidine. Cardiogenic specific contractile protein troponin T staining was performed to identify the cardiomy-ocyte-like cells. The results showed that the frequency of CB-MSPCs clones in CB mononuclear cells was 0. 5×10-6 and about 1. 3×107-fold expansion was achieved within 20 sub-cultivation. After car-diogenic induction, 70 % CB-MSPCs was differentiated into cardiomyocyte-like cells. It was indicated that low serum culture could expand CB-MSPCs extensively and the expanded CB-MSPCs could be induced to differentiate into cardiomyocyte-like cells in high efficiency.展开更多
This work aimed to study the beneficial role of human umbilical cord blood-derived mesenchymal stem cellconditioned medium(MSC-CM)in hypoxia-induced apoptosis in H9c2 cardiomyoblasts,in which the serine/heroine kinase...This work aimed to study the beneficial role of human umbilical cord blood-derived mesenchymal stem cellconditioned medium(MSC-CM)in hypoxia-induced apoptosis in H9c2 cardiomyoblasts,in which the serine/heroine kinases(Akt)pathway would be involved.For this,CM was collected by culturing MSCs in serum-free DMEM medium for 24 h,and paracrine factors were analyzed by protein chip.H9c2 cells were divided into the following groups:control group,hypoxia group,MSC-CM intervention group(CM group),MSC-CM+Akt phosphorylation inhibitor(LY294002)group(LY group).Apoptosis of the H9c2 cells was tested with chromatin dye Hoechst 33342 and FITC-conjugated Annexin V apoptosis detection kit by flow cytometer after a hypoxia/serum deprivation(H/SD)for 24 h.The apoptosis-related proteins were evaluated by Western blot.MSC-CM displayed significantly elevated levels of growth factors,anti-inflammatory,and anti-apoptosis cytokines.On Hoechst 33342 apoptosis staining,the H9c2 cell morphology displayed a lower proportion of apoptosis in the CM group than those in the hypoxia group,while apoptosis was increased in LY group.Flow cytometer analysis revealed the apoptosis ratio in the CM group was lower than the hypoxia group(12.34±2.00%vs.21.73±2.58%,p<0.05),while the LY group was significantly higher(22.54±3.89%).Active caspase-3 expression was increased in hypoxia group than control group(p<0.05),but decreased in CM group(p<0.01).Umbilical cord blood-derived mesenchymal stem cell-conditioned media secrete multiple paracrine factors that are able to inhibit hypoxia-induced H9c2 cardiomyoblasts apoptosis,and in which the activation of Akt phosphorylation is involved to achieve the protective effect.展开更多
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-d...Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e展开更多
BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation duri...BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments.展开更多
Objective To study the safety and effect of the umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) on apoptosis of human cardiomyocytes (HCM). Methods UCB was collected at the time of delivery with...Objective To study the safety and effect of the umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) on apoptosis of human cardiomyocytes (HCM). Methods UCB was collected at the time of delivery with informed consent obtained from 10 donors. The UCB-derived MSCs were treated with 5-azaserube (5-AZA) and were further induced to differentiate into cardiomyocytes. Telomerase activity, G-banding patterns of chromosomal karyotypes, tumor formation in nude mice, RT-PCR, and the effect of inhibiting apoptosis of HCM were investigated. Results MSCs derived from UCB were differentiated into cardiomyocytes in vitro, which possessed telomerase activity after 5-AZA induction, and no abnormal chromosomal karyotypes were observed. Expression of p53, cyclin A, cdk2, ~3 -actin, C-fos, h-TERT and c-myc were similar in MSCs before and after 5-AZA treatment. There was no tumor formation in nude mice after injection of UCB-derived MSCs. UCB-derived MSCs significantly inhibited apoptosis of HCM. Conclusion UCB-derived MSCs are a valuable, safe and effective source of cell-transplantation treatment .展开更多
CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities) is an autosomal dominant disorder cha...CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities) is an autosomal dominant disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the CHD7 gene are the major cause of CHARGE syndrome. Here, we present a family who sought genetic counseling because of a newborn with dysmorphic features suggesting CHARGE syndrome. The baby died three months later. Afterwards, a molecular genetic testing for sequence analysis of the CHD7 coding region was performed with DNA extracted from umbilical cord blood stem cells confirming the diagnosis of CHARGE syndrome. Although the diagnosis is first suspected clinically, in the newborn case presented here, we illustrate the importance of the molecular testing to confirm the diagnosis, and to enable precise genetic counseling. Also, even though cord blood has been stored in private banks for more than ten years, there is as yet no routine clinical application of autologous (self-donation) hematopoietic stem cells from cord blood. Now, we illustrate for the first time the usefulness of umbilical cord blood stem cells for diagnosis and genetic counseling in a case that involve a dead propositus.展开更多
Objective:The chimeric mice were prepared by microinjection of blastocyst cavity using umbilical cord blood stem cells(UCBSCs)of Enhanced Green Fluorescent Protein(EGFP)-transgenic mouse,which was expected to provide ...Objective:The chimeric mice were prepared by microinjection of blastocyst cavity using umbilical cord blood stem cells(UCBSCs)of Enhanced Green Fluorescent Protein(EGFP)-transgenic mouse,which was expected to provide a theoretical and experimental basis for the study of in-vivo differentiation of adult stem cells.Methods:Mouse UCBSCs expressing green fluorescence was microinjected into blastocyst cavity and several blastocysts were transferred into uterus of pseudo pregnant mouse.First of all,new-born candidate chimeric mice were observed through feather color.Secondly,the genomic DNA and total RNA were extracted to analyze chimeric rate in several tissues.Finally,flow cytometry was used to detect percentage of green fluorescent cells mice in several tissues.Results:The UCBSCs expressing green fluorescent protein were successfully isolated.After flow cytometry analysis,the proportion of cells expressing green fluorescence was 80.25%.Through microinjection and embryo transfer,we got five white new-born mice and no chimeric feather color was observed.The analyses of PCR and RT-PCR were carried out to detect EGFP gene using six tissues including heart muscle,liver,lung,skin,leg muscle and adipose tissue.The results showed that the leg muscle and adipose tissue of two mice were positive and the other tissues and six tissues of the other 3 mice were all negative.The leg muscle and adipose tissue of two positive mice were digested into single-cells suspension and were carried out flow cytometry analysis.The results showed that the average chimeric rates of leg muscle and adipose tissue of two positive mice were 9.87% and 5.78%,respectively.Conclusions:The results demonstrated that adult UCBSCs could differentiate into leg muscle and adipose tissue in vivo.展开更多
Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this st...Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time 〉 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury展开更多
Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical...Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.展开更多
Objective: To explore whether human umbilical cord blood hematopoietic progenitor cells transduced with human O^6-methylguanine-DNA-methyltrans (MGMT) gene could increase resistance to 1,3-Bis(2- Chloroethyl)-1-Nitros...Objective: To explore whether human umbilical cord blood hematopoietic progenitor cells transduced with human O^6-methylguanine-DNA-methyltrans (MGMT) gene could increase resistance to 1,3-Bis(2- Chloroethyl)-1-Nitrosourea (BCNU). Methods: The cDNA encoding the MGMT was isolated by using RT- PCR method from total RNA of fresh human liven the fragment was cloned into PGEM-T vector and further subcloned into GINa retrovirus vector. Then the GINaMGMT was transduced into the packaging cell lines GP+E86 and PA317 by LipofectAMINE. By using the medium containing BCNU for cloning selection and ping-ponging supernatant infection between ecotropic producer clone and amphotropic producer clone, high titer amphotropic PA317 producer clone with the highest titer up to 5.8x105 CFU/ml was obtained. Cord blood CD34+ cells were transfected repeatedly with supernatant of retrovirus containing human MGMT- cDNA under stimulation of hemopoietic growth factors. Results: The retrovirus vector construction was verified by restriction endonuclease analysis and DNA sequencing. PCR, RT-PCR, Southern Blot, Western Blot and MTT analyses showed that MGMT drug resistance gene has been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The transgene cord blood CD34+ cells conferred 4-folds stronger resistance to BCNU than untransduced cells. Conclusion: The retrovirus vector-mediated transfer of MGMT drug resistance gene into human cord blood CD34+ cells and its expression provided an experimental foundation for gene therapy in clinical trial.展开更多
Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit model...Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10^6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.展开更多
Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduit...Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduits injected with human umbilical cord stem cells could be an effective method to solve such problems,but studies focused on the best type of Y-tube conduit remain controversial.Therefore,the present study evaluated the applicability and efficacy of various types of Y-tube conduits containing human umbilical cord stem cells for treating rat femoral nerve defects on their bifurcation points.At 12 weeks after the bridging surgery that included treatment with different types of Y-tube conduits,there were no differences in quadriceps femoris muscle weight or femoral nerve ultrastructure.However,the Y-tube conduit group with longer branches and a short trunk resulted in a better outcome according to retrograde labeling and electrophysiological analysis.It can be concluded from the study that repairing a mixed nerve defect at its bifurcation point with Y-tube conduits,in particular those with long branches and a short trunk,is effective and results in good outcomes.展开更多
基金the Korea Health R&D Project Granted by Ministry of Health and Welfare Republic of Korea, No. A080863
文摘BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration.
文摘BACKGROUND: Exogenous neural stem cell transplantation promotes neural regeneration. However, various types of stem cells transplantation outcomes remain controversial. OBJECTIVE: To explore distribution, proliferation and differentiation of human neural stem cells (hNSCs) and human umbilical cord blood stem cells (hUCBSCs) following transplantation in ischemic brain tissue of rats, and to compare therapeutic outcomes between hNSCs and hUCBSCs. DESIGN, TIME AND SETTING: Randomized controlled animal studies were performed at the Experimental Animal Center of Nanjing Medical University and Central Laboratory of Second Affiliated Hospital of Nanjing Medical University of China from September 2008 to April 2009. MATERIALS: hNSCs were harvested from brain tissue of 10 13 week old fetuses following spontaneous abortion, and hUCBSCs were collected from umbilical cord blood of full-term newborns at the Second Affiliated Hospital of Nanjing Medical University of China. hNSCs and hUCBSCs were labeled by 5-bromodeoxyuridine (BrdU) prior to transplantation. METHODS: Rat models of cerebral ischemia were established by the suture method. A total of 60 healthy male Sprague Dawley rats aged 7-9 weeks were randomly assigned to hNSC transplantation, hUCBSC transplantation and control groups. The rat models in the hNSC transplantation, hUCBSC transplantation and control groups were infused with hNSC suspension, hUCBSC suspension and saline via the caudal vein, respectively. MAIN OUTCOME MEASURES: The distribution, proliferation and differentiation of hNSCs and hUCBSCs in ischemic brain tissue were observed using immunohistochemical methods. Neurological function in rats was assessed using the neurological severity score. RESULTS: The number of BrdU-positive cells was significantly greater in the hNSC transplantation group compared with hUCBSC transplantation group at 14 days following transplantation (P 〈 0.05) The number of BrdU-positive cells reached a peak at 28 days following transplantation. Nestin-positive, glial fibrillary acidic protein-positive, cyclic nucleotide 3' phosphohydrolase-positive and neuron specific enolase-positive cells were visible following transplantation. No significant difference was determined in the constituent ratio of various cells between hNSC and hUCBSC transplantation groups (P 〉 0.05). The neurological severity score was significantly decreased in rats at 21 days following transplantation (P 〈 0.05). No significant difference was detected in neurological severity score between hNSC and hUCBSC transplantation groups at various time points (P 〉 0.05). CONCLUSION: The transplanted hNSCs and hUCBSCs can migrate into ischemic brain tissue, proliferate and differentiate into neuron-like, astrocyte-like and oligodendrocyte-like cells, and improve neurological function in rats with cerebral ischemia.
基金Supported by the National Natural Science Foundation of China, No. 39870651Natural Science Foundation of Hunan Province, No. 04JJ6048
文摘AIM: To study the condition and potentiality of human umbilical cord blood stem cells (HUCBSC) to differentiate into hepatocytes in vivo or in vitro. METHODS: In a cell culture study of human umbilical cord blood stem cell (HUCBSC) differentiation, human umbilical cord blood mononuclear cells (HUCBMNC) were separated by density gradient centrifugation. Fibroblast growth factor (FGF) and hepatocyte growth factor (HGF) and the supernatant of fetal liver were added in the inducing groups. Only FGF was added in the control group. The expansion and differentiation of HUCBMNC in each group were observed. Human alpha fetoprotein (AFP) and albumin (ALB) were detected by immunohistochemistry. In the animal experiments, the survival SD rats with acute hepatic injury after carbon tetrachloride (CCL4) injection 48 h were randomly divided into three groups. The rats in group A were treated with human umbilical cord blood serum. The rats in group B were treated with HUCBMNC transplantation. The rats in group C were treated with HUCBMNC transplantation followed by intraperitoneal cyclophosphamide for 7 d. The rats were killed at different time points after the treatment and the liver tissue was histopathologically studied and human AFP and ALB detected by immunohistochemistry. The human X inactive-specific transcript gene fragment in the liver tissue was amplified by PCR to find human DNA. RESULTS: The results of cell culture showed that adherent cells were stained negative for AFP or ALB in control group. However, the adherent cells in the inducing groups stained positive for AFP or ALB. The result of animal experiment showed that no human AFP or ALB positive cells present in the liver tissue of group A (control group). However, many human AFP or ALB positive cells were scattered around sinus hepaUcus and the central veins of hepatic Iobules and in the portal area in group B and group C after one month. The fragment of human X chromagene could be detected in the liver tissue of groups B and C, but not in group A.CONCLUSION: Under certain conditions HUCBSC can differentiate into liver cells in vivo and in vitro.
基金supported by Medical Scientific Research Program of Hebei Province in 2010, Hebei Provincial Health Department, No. 20100131
文摘In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.
基金Supported by:Tackle Key Project of Chongqing Municipal Science and Technology Ministry,No. 7830
文摘BACKGROUND: Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity. OBJECTIVE: To investigate isolation and in vitro cultivation methods of human cord blood MSCs, to observe expression of neural stem cell (NSC) marker mRNA under induction, and to detect tumorigenicity in animals. DESIGN, TIME AND SETTING: A cell biological, in vitro trial and a randomized, controlled, in vivo experiment were performed at the Department of Neurology, Daping Hospital at the Third Military Medical University of Chinese PLA from August 2006 to May 2008. MATERIALS: Umbilical cord blood was collected from full-term-delivery fetus at the Department of Gynecology and Obstetrics of Daping Hospital, China. Eighteen BALB/C nu/nu nude mice were randomly assigned to three groups: back subcutaneous, cervical subcutaneous, and control, with 6 mice in each group. METHODS: Monocytes were isolated from heparinized human cord blood samples by density gradient centrifugation and then adherent cultivated in vitro to obtain MSC clones. After the cord blood MSCs were cultured for 7 days with nerve growth factor and retinoic acid to induce differentiation into NSCs, the cells (adjusted density of 1 × 10^7/mL) were prepared into cell suspension. In the back subcutaneous and cervical subcutaneous groups, nude mice were hypodermically injected with a 0.5-mL cell suspension into the back and cervical regions, respectively. In the control group, nude mice received a subcutaneous injection of 0.5 mL physiological saline into the back or cervical regions, respectively. MAIN OUTCOME MEASURES: Cellular morphology was observed by inverted microscopy, cultured cord blood MSCs were examined by flow cytometry, expression of nestin and musashi-1 mRNA was detected by reverse-transcriptase polymerase chain reaction prior to and after induction, and tumorigenicity following cord blood MSC transplantation was assayed by hematoxylin-eosin staining. RESULTS: Following adherent cultivation, the majority of cord blood monocytes became rhombic and strongly expressed CD29, but not CD34, CD1 la, or CD11 b. These results supported previously known characteristics of cord blood MSCs. Following differentiation induction, nestin and musashi-1 were expressed on the surface of NSCs, exhibiting strongest expression at 48 hours, and subsequently reducing expression. Cultured cord blood MSCs were not tumorigenic in the nude mice. Cellular morphology displayed no malignant changes between the control and subcutaneous groups. CONCLUSION: MSCs can be isolated from human cord blood, efficiently expanded under culture conditions, differentiated into NSCs following induction, and display no tumorigenicity in nude mice.
文摘BACKGROUND: Transplanted mononuclear cell (MNC) of umbilical blood can survive in central nervous system (CNS) of host through blood brain barrier, differentiate into nerve cells, migrate to damaged site and integrate morphological structure and function with nerve cells of host so as to improve deficiencies of sensatory function, motor function and cognitive function and influence on stroke sequela. OBJECTIVE: To observe the vein transplantation of human umbilical cord blood stem cells (HUCBSC) for improving neurological function, limb function and activity of daily living of patients with stroke and evaluate the reliability. DESIGN: Self-controlled study. SETTING: Department of Neurosurgery, the Second People's Hospital of Zhengzhou City; Red-crossed Blood Center of Henan Province; Department of Neurosurgery, the Fist Affiliated Hospital of Zhengzhou University. PARTICIPANTS: A total of 10 patients with stroke sequela were selected from Department of Cerebral Surgery, the Second People's Hospital of Zhengzhou City from April to December 2005. There were 9 males and 1 female aged from 35 to 75 years with the mean age of 56 years. All of them were diagnosed with CT and MRI examination and coincidence with diagnostic criteria of stroke established by the Fourth National Academic Meeting for Cerebrovascular Disease. All patients provided informed consent. METHODS: 80-140 mL umbilical blood of term birth of newborn was selected hermetically and maintained in sterile plastic bag. And then, the blood was centrifugated at the speed of 1 500 r/min for 30 minutes at 22 ℃ in order to separate MNC, i.e., HUCBSC. In addition, after final diagnosis during hospitalization, stroke patients were perfused with HUCBSC through superficial vein of back of the hand. Each patient was averagely perfused with 6 portions of HUCBSC (cellular numbers ≥ 1×108/portion) and the interval between each portion was 1-7 days with the mean interval of 4 days. MAIN OUTCOME MEASURES: ① Neurological function of stroke patients was evaluated with neurological function deficiency (NFD) before treatment and at 3 months after treatment. The scale includes consciousness, level fix function, facial paralysis, language, muscle force of upper limbs, muscle force of lower limb and step function. The total scores ranged from 0 to 45; meanwhile, the lower the scores were, the better the neurological function was. ② Motor function of injured limbs was evaluated with Fugl-Meyer Assessment (FMA), including motor function of upper limbs, motor function of lower limbs, balance ability, sensory function and motion of joint. The total scores ranged from 0 to 226; meanwhile, the higher the scores were, the better the motor function of limbs was. ③ Activities of daily living (ADL) was evaluated with Barthel Index (BI), including having meals, taking a bath, dressing oneself, putting on clothes, walking in balance and stair activity. The total scores ranged from 0 to 100; meanwhile, the higher the scores were, the stronger the ADL was. RESULTS: A total of 10 patients were involved in the final analysis. After treatment, NFD of stroke patients was (10.9±5.09) points, which was lower than that before treatment [(25.4±6.09) points, t =8.213, P < 0.01]. In addition, after treatment, FMA and BI of stroke patients were (80.9±25.00) points and (81.1±15.93) points, respectively, which were higher than those before treatment [(31.9±21.85) points, (36.2±19.41) points, t =13.024, 13.670, P < 0.01]. Immuno-suppressive drugs were not used during the whole therapeutic procedure; moreover, immunological rejection and allergic reaction were not observed during the same period. CONCLUSION: Transplanting HUCBSC through superficial vein of back of the hand is regarded as a simple and safe method for the treatment of stroke sequela.
文摘Umbilical cord blood(UCB)is a primitive and abundant source of mesenchymal stem cells(MSCs).UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders.Despite the high latent selfrenewal and differentiation capacity of these cells,the safety,efficacy,and yield of MSCs expanded for ex vivo clinical applications remains a concern.However,immunomodulatory effects have emerged in various disease models,exhibiting specific mechanisms of action,such as cell migration and homing,angiogenesis,anti-apoptosis,proliferation,anti-cancer,anti-fibrosis,anti-inflammation and tissue regeneration.Herein,we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies,and discuss the concerns regarding the safety and mass production issues in future applications.
文摘The feasibility of using cord blood mesenchymal stem/progenitor cells (CB-MSPCs) to regenerate cardiomyocytes and the optimal inducing conditions were investigated. The CB mononuclear cells were cultured in low serum DMEM medium to produce an adherent layer. After expansion, the adherent cells were added into cardiomyocyte inducing medium supplemented with 5-azacytidine. Cardiogenic specific contractile protein troponin T staining was performed to identify the cardiomy-ocyte-like cells. The results showed that the frequency of CB-MSPCs clones in CB mononuclear cells was 0. 5×10-6 and about 1. 3×107-fold expansion was achieved within 20 sub-cultivation. After car-diogenic induction, 70 % CB-MSPCs was differentiated into cardiomyocyte-like cells. It was indicated that low serum culture could expand CB-MSPCs extensively and the expanded CB-MSPCs could be induced to differentiate into cardiomyocyte-like cells in high efficiency.
基金the National Natural Science Fund of China(81600196)grants from Beijing key laboratory of metabolic disorder related cardiovascular disease.
文摘This work aimed to study the beneficial role of human umbilical cord blood-derived mesenchymal stem cellconditioned medium(MSC-CM)in hypoxia-induced apoptosis in H9c2 cardiomyoblasts,in which the serine/heroine kinases(Akt)pathway would be involved.For this,CM was collected by culturing MSCs in serum-free DMEM medium for 24 h,and paracrine factors were analyzed by protein chip.H9c2 cells were divided into the following groups:control group,hypoxia group,MSC-CM intervention group(CM group),MSC-CM+Akt phosphorylation inhibitor(LY294002)group(LY group).Apoptosis of the H9c2 cells was tested with chromatin dye Hoechst 33342 and FITC-conjugated Annexin V apoptosis detection kit by flow cytometer after a hypoxia/serum deprivation(H/SD)for 24 h.The apoptosis-related proteins were evaluated by Western blot.MSC-CM displayed significantly elevated levels of growth factors,anti-inflammatory,and anti-apoptosis cytokines.On Hoechst 33342 apoptosis staining,the H9c2 cell morphology displayed a lower proportion of apoptosis in the CM group than those in the hypoxia group,while apoptosis was increased in LY group.Flow cytometer analysis revealed the apoptosis ratio in the CM group was lower than the hypoxia group(12.34±2.00%vs.21.73±2.58%,p<0.05),while the LY group was significantly higher(22.54±3.89%).Active caspase-3 expression was increased in hypoxia group than control group(p<0.05),but decreased in CM group(p<0.01).Umbilical cord blood-derived mesenchymal stem cell-conditioned media secrete multiple paracrine factors that are able to inhibit hypoxia-induced H9c2 cardiomyoblasts apoptosis,and in which the activation of Akt phosphorylation is involved to achieve the protective effect.
基金supported by a grant of the Seoul National University Dental Hospital,Republic of Korea,No.03-2010-0020
文摘Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e
基金the National Natural Science Foundation of China, No. 3067104130870642
文摘BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments.
文摘Objective To study the safety and effect of the umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) on apoptosis of human cardiomyocytes (HCM). Methods UCB was collected at the time of delivery with informed consent obtained from 10 donors. The UCB-derived MSCs were treated with 5-azaserube (5-AZA) and were further induced to differentiate into cardiomyocytes. Telomerase activity, G-banding patterns of chromosomal karyotypes, tumor formation in nude mice, RT-PCR, and the effect of inhibiting apoptosis of HCM were investigated. Results MSCs derived from UCB were differentiated into cardiomyocytes in vitro, which possessed telomerase activity after 5-AZA induction, and no abnormal chromosomal karyotypes were observed. Expression of p53, cyclin A, cdk2, ~3 -actin, C-fos, h-TERT and c-myc were similar in MSCs before and after 5-AZA treatment. There was no tumor formation in nude mice after injection of UCB-derived MSCs. UCB-derived MSCs significantly inhibited apoptosis of HCM. Conclusion UCB-derived MSCs are a valuable, safe and effective source of cell-transplantation treatment .
文摘CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities) is an autosomal dominant disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the CHD7 gene are the major cause of CHARGE syndrome. Here, we present a family who sought genetic counseling because of a newborn with dysmorphic features suggesting CHARGE syndrome. The baby died three months later. Afterwards, a molecular genetic testing for sequence analysis of the CHD7 coding region was performed with DNA extracted from umbilical cord blood stem cells confirming the diagnosis of CHARGE syndrome. Although the diagnosis is first suspected clinically, in the newborn case presented here, we illustrate the importance of the molecular testing to confirm the diagnosis, and to enable precise genetic counseling. Also, even though cord blood has been stored in private banks for more than ten years, there is as yet no routine clinical application of autologous (self-donation) hematopoietic stem cells from cord blood. Now, we illustrate for the first time the usefulness of umbilical cord blood stem cells for diagnosis and genetic counseling in a case that involve a dead propositus.
文摘Objective:The chimeric mice were prepared by microinjection of blastocyst cavity using umbilical cord blood stem cells(UCBSCs)of Enhanced Green Fluorescent Protein(EGFP)-transgenic mouse,which was expected to provide a theoretical and experimental basis for the study of in-vivo differentiation of adult stem cells.Methods:Mouse UCBSCs expressing green fluorescence was microinjected into blastocyst cavity and several blastocysts were transferred into uterus of pseudo pregnant mouse.First of all,new-born candidate chimeric mice were observed through feather color.Secondly,the genomic DNA and total RNA were extracted to analyze chimeric rate in several tissues.Finally,flow cytometry was used to detect percentage of green fluorescent cells mice in several tissues.Results:The UCBSCs expressing green fluorescent protein were successfully isolated.After flow cytometry analysis,the proportion of cells expressing green fluorescence was 80.25%.Through microinjection and embryo transfer,we got five white new-born mice and no chimeric feather color was observed.The analyses of PCR and RT-PCR were carried out to detect EGFP gene using six tissues including heart muscle,liver,lung,skin,leg muscle and adipose tissue.The results showed that the leg muscle and adipose tissue of two mice were positive and the other tissues and six tissues of the other 3 mice were all negative.The leg muscle and adipose tissue of two positive mice were digested into single-cells suspension and were carried out flow cytometry analysis.The results showed that the average chimeric rates of leg muscle and adipose tissue of two positive mice were 9.87% and 5.78%,respectively.Conclusions:The results demonstrated that adult UCBSCs could differentiate into leg muscle and adipose tissue in vivo.
文摘Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time 〉 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury
基金This study was supported by a grant from National Natural Science Foundation of China(No.30271245)Hi-Tech Research and Development Program of China(863 Program)(No.2003AA205170)+1 种基金National Basic Research Program of China(973 Program)(No.G 1999054302)a grant from Bejing Gynecology and Obstetrics Hospital Affiliate of Capital University of Medical Sciences.
文摘Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.
文摘Objective: To explore whether human umbilical cord blood hematopoietic progenitor cells transduced with human O^6-methylguanine-DNA-methyltrans (MGMT) gene could increase resistance to 1,3-Bis(2- Chloroethyl)-1-Nitrosourea (BCNU). Methods: The cDNA encoding the MGMT was isolated by using RT- PCR method from total RNA of fresh human liven the fragment was cloned into PGEM-T vector and further subcloned into GINa retrovirus vector. Then the GINaMGMT was transduced into the packaging cell lines GP+E86 and PA317 by LipofectAMINE. By using the medium containing BCNU for cloning selection and ping-ponging supernatant infection between ecotropic producer clone and amphotropic producer clone, high titer amphotropic PA317 producer clone with the highest titer up to 5.8x105 CFU/ml was obtained. Cord blood CD34+ cells were transfected repeatedly with supernatant of retrovirus containing human MGMT- cDNA under stimulation of hemopoietic growth factors. Results: The retrovirus vector construction was verified by restriction endonuclease analysis and DNA sequencing. PCR, RT-PCR, Southern Blot, Western Blot and MTT analyses showed that MGMT drug resistance gene has been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The transgene cord blood CD34+ cells conferred 4-folds stronger resistance to BCNU than untransduced cells. Conclusion: The retrovirus vector-mediated transfer of MGMT drug resistance gene into human cord blood CD34+ cells and its expression provided an experimental foundation for gene therapy in clinical trial.
基金supported by a grant from Science and Technology Development Program of Jilin Province of China,No.20110492
文摘Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10^6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.
基金funded by the National High Technology Research and Development Program of China ("863" Program,No.2012AA020905)the National Natural Science Foundation of China (No.81360194)the National Basic Research Program of China (973 program,No.2014CB542200)
文摘Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduits injected with human umbilical cord stem cells could be an effective method to solve such problems,but studies focused on the best type of Y-tube conduit remain controversial.Therefore,the present study evaluated the applicability and efficacy of various types of Y-tube conduits containing human umbilical cord stem cells for treating rat femoral nerve defects on their bifurcation points.At 12 weeks after the bridging surgery that included treatment with different types of Y-tube conduits,there were no differences in quadriceps femoris muscle weight or femoral nerve ultrastructure.However,the Y-tube conduit group with longer branches and a short trunk resulted in a better outcome according to retrograde labeling and electrophysiological analysis.It can be concluded from the study that repairing a mixed nerve defect at its bifurcation point with Y-tube conduits,in particular those with long branches and a short trunk,is effective and results in good outcomes.