期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Oxidative damage of primary cultured hippocampal neurons Does androgen have an antagonistic effect? 被引量:4
1
作者 Zhaohui Li Zhiping Cai +4 位作者 Huixian Cui Jinsong Zhu Sha Li Guosheng Xie Lei Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第5期358-363,共6页
BACKGROUND: Evidence illustrates that androgen has a neuroprotective role. However, whether androgen also has the protective effect on hippocampal neurons during free radical mediated injury remains unclear. OBJECTIV... BACKGROUND: Evidence illustrates that androgen has a neuroprotective role. However, whether androgen also has the protective effect on hippocampal neurons during free radical mediated injury remains unclear. OBJECTIVE: To investigate the neuroprotective effect of androgen on hippocampal neurons during free radical damage. DESIGN, TIME AND SETTING: A controlled in vitro experiment was performed at the Department of Human Anatomy, Cell Culture Lab, and Neuroendocrinology Lab, Basic Medical School, Hebei Medical University from February to June 2009. MATERIALS: Testosterone was provided by Tianjin Jinyao Amino Acid Company, China. METHODS: Primary cultured neurons from 24 Sprague Dawley rats were randomly assigned into four groups: control, H202, testosterone, and testosterone (pre-added) plus H2O2 groups. MAIN OUTCOME MEASURES: The positive cell ratio of microtubule associated protein-Ⅱ and neuron specific enolase was determined by immunocytochemistry. Neuronal morphology was observed by hematoxylin-eosin staining and Nissl staining. Cell vitality and viability were determined using an inverted phase contrast microscope. The content of nitric oxide synthase, malondialdehyde, and superoxide dismutase were measured with a spectrophotometer. RESULTS: As compared with the control group, cell vitality and viability, and superoxide dismutase level were significantly decreased in the H202 group (P 〈 0.05), while nitric oxide synthase and malondialdehyde levels were significantly increased (P 〈 0.05). Neuronal vitality and viability as well as superoxide dismutase level in the testosterone plus H2O2 group were significantly greater than in the H2O2 group (P 〈 0.05), and nitric oxide synthase and malondialdehyde levels were significantly less than in the H2O2 group (P〈 0.05). CONCLUSION: Androgen partially reversed H2O2-induced neuronal damage and protected neurons. 展开更多
关键词 ANDROGEN primary cultured hippocampal neuron free radical nitric oxide synthase superoxide dismutase MALONDIALDEHYDE oxidative damage
下载PDF
Effects of Single and Repeated Exposure to a 50-Hz 2-mT Electromagnetic Field on Primary Cultured Hippocampal Neurons 被引量:6
2
作者 Ying Zeng Yunyun Shen +4 位作者 Ling Hong Yanfeng Chen Xiaofang Shi Qunli Zeng Peilin Yu 《Neuroscience Bulletin》 SCIE CAS CSCD 2017年第3期299-306,共8页
The prevalence of domestic and industrial electrical appliances has raised concerns about the health risk of extremely low-frequency magnetic fields(ELF-MFs). At present, the effects of ELF-MFs on the central nervou... The prevalence of domestic and industrial electrical appliances has raised concerns about the health risk of extremely low-frequency magnetic fields(ELF-MFs). At present, the effects of ELF-MFs on the central nervous system are still highly controversial, and few studies have investigated its effects on cultured neurons. Here, we evaluated the biological effects of different patterns of ELF-MF exposure on primary cultured hippocampal neurons in terms of viability, apoptosis, genomic instability,and oxidative stress. The results showed that repeated exposure to 50-Hz 2-mT ELF-MF for 8 h per day after different times in culture decreased the viability and increased the production of intracellular reactive oxidative species in hippocampal neurons. The mechanism was potentially related to the up-regulation of Nox2 expression.Moreover, none of the repeated exposure patterns had significant effects on DNA damage, apoptosis, or autophagy, which suggested that ELF-MF exposure has no severe biological consequences in cultured hippocampal neurons. 展开更多
关键词 ELF-MF Primary cultured hippocampal neurons Oxidative stress Cell viability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部