The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we co...The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles.展开更多
A performance test was conducted in a wind tunnel by changing the principal configuration parameters of a sampler such as the diameter of the container, inlet width and cone height. The results show that the average s...A performance test was conducted in a wind tunnel by changing the principal configuration parameters of a sampler such as the diameter of the container, inlet width and cone height. The results show that the average sand collection rate is from 80% to 90% when any one of the configuration parameter levels is changed. However, the variation of a parameter level results in different ef-fects on the sand collection rate for each soil sample within a certain size range of sand grains. The results show that for various sand grain sized soil sample at each wind speed, the sand collection rate decreases when the diameter of the container changes from 50 mm to 40 mm, the sand collection rate increases by about 2%-3% when the inlet width changes from 10 mm to 8 mm, and the sand collection rate increases by about 3%-4% when cone height is altered from 100 mm to 125 mm. The average sand collection rate is enhanced by 2%-4% for the soil sample of different sized sand grains when the diameter of the container is 50 mm, the inlet width is 8 mm, and cone height is 125 mm.展开更多
基金supported by the National Natural Science Foundation of China (41401310, 41661003)the Science-Technology Research Project of Ningxia Environmental Protection Department
文摘The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles.
基金supported by The National Natural Science Foundation of China (Grant No. 40861013)Natural Science Foundation of Inner Mongolia (Grant No. 200508010708)
文摘A performance test was conducted in a wind tunnel by changing the principal configuration parameters of a sampler such as the diameter of the container, inlet width and cone height. The results show that the average sand collection rate is from 80% to 90% when any one of the configuration parameter levels is changed. However, the variation of a parameter level results in different ef-fects on the sand collection rate for each soil sample within a certain size range of sand grains. The results show that for various sand grain sized soil sample at each wind speed, the sand collection rate decreases when the diameter of the container changes from 50 mm to 40 mm, the sand collection rate increases by about 2%-3% when the inlet width changes from 10 mm to 8 mm, and the sand collection rate increases by about 3%-4% when cone height is altered from 100 mm to 125 mm. The average sand collection rate is enhanced by 2%-4% for the soil sample of different sized sand grains when the diameter of the container is 50 mm, the inlet width is 8 mm, and cone height is 125 mm.