One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltag...One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltage-mode circuit exhibit simultaneously lowpass and bandpass filters. The proposed current-mode circuit exhibit simultaneously lowpass, bandpass and highpass filters. The proposed circuits offer the following features: no requirements for component matching conditions;low active and passive sensitivities;employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.展开更多
A new non-inverting RC active differentiator network base on a current feedback amplifier and using a grounded capacitor is described. Small time constant can be achieved by adjusting a single grounded resistor. Becau...A new non-inverting RC active differentiator network base on a current feedback amplifier and using a grounded capacitor is described. Small time constant can be achieved by adjusting a single grounded resistor. Because the output impedance of the CFA is very low, the output terminal of the proposed circuit can be directly connected to the next stage. Experimental results that confirm theoretical analysis are presented.展开更多
In the recent decade,different researchers have performed hardware implementation for different applications covering various areas of experts.In this research paper,a novel analog design and implementation of differe...In the recent decade,different researchers have performed hardware implementation for different applications covering various areas of experts.In this research paper,a novel analog design and implementation of different steps of fuzzy systems with current differencing buffered amplifier(CDBA)are proposed with a compact structure that can be used in many signal processing applications.The proposed circuits are capable of wide input current range,simple structure,and are highly linear.Different electrical parameters were compared for the proposed fuzzy system when using different membership functions.The novelty of this paper lies in the electronic implementation of different steps for realizing a fuzzy system using current amplifiers.When the power supply voltage of CDBA is 2V,it results in 155mW,power dissipation;4.615KΩ,input resistance;366KΩ,output resistances;and 189.09 dB,common-mode rejection ratio.A 155.519 dB,voltage gain,and 0.76V/μs,the slew rate is analyzed when the power supply voltage of CDBAis 3V.The fuzzy system is realized in 20nm CMOS technology and investigated with an output signal of high precision and high speed,illustrating that it is suitable for realtime applications.In this research paper,a consequence of feedback resistance on the adder circuit and the defuzzified circuit is also analyzed and the best results are obtained using 100K resistance.The structure has a low hardware complexity leading to a low delay and a rather high quality.展开更多
文摘One configuration for realizing voltage-mode multifunction filters and another configuration for realizing current-mode multifunction filters using current feedback amplifiers (CFAs) are presented. The proposed voltage-mode circuit exhibit simultaneously lowpass and bandpass filters. The proposed current-mode circuit exhibit simultaneously lowpass, bandpass and highpass filters. The proposed circuits offer the following features: no requirements for component matching conditions;low active and passive sensitivities;employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.
文摘A new non-inverting RC active differentiator network base on a current feedback amplifier and using a grounded capacitor is described. Small time constant can be achieved by adjusting a single grounded resistor. Because the output impedance of the CFA is very low, the output terminal of the proposed circuit can be directly connected to the next stage. Experimental results that confirm theoretical analysis are presented.
文摘In the recent decade,different researchers have performed hardware implementation for different applications covering various areas of experts.In this research paper,a novel analog design and implementation of different steps of fuzzy systems with current differencing buffered amplifier(CDBA)are proposed with a compact structure that can be used in many signal processing applications.The proposed circuits are capable of wide input current range,simple structure,and are highly linear.Different electrical parameters were compared for the proposed fuzzy system when using different membership functions.The novelty of this paper lies in the electronic implementation of different steps for realizing a fuzzy system using current amplifiers.When the power supply voltage of CDBA is 2V,it results in 155mW,power dissipation;4.615KΩ,input resistance;366KΩ,output resistances;and 189.09 dB,common-mode rejection ratio.A 155.519 dB,voltage gain,and 0.76V/μs,the slew rate is analyzed when the power supply voltage of CDBAis 3V.The fuzzy system is realized in 20nm CMOS technology and investigated with an output signal of high precision and high speed,illustrating that it is suitable for realtime applications.In this research paper,a consequence of feedback resistance on the adder circuit and the defuzzified circuit is also analyzed and the best results are obtained using 100K resistance.The structure has a low hardware complexity leading to a low delay and a rather high quality.