The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on...The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on quantity and increased on scale with the increasing current density.AFM results revealed that the roughness of the coatings increased with the increasing current density.Phase and composition analysis showed that the Nd:TiO_(2) coatings were mainly composed of anatase and rutile phase.And the anatase phase content has reached the maximum value at the current density of 250 m A/cm^(2).XPS results indicated that Ti2p spin-orbit components of the Nd:TiO_(2) coatings are shifted towards higher binding energy,compared with the pure TiO_(2) coating,suggesting that some of the Nd^(3+)ions are combined with TiO_(2) lattice and led to dislocation.Photocatalytic test showed that the photocatalytic activity of Nd:TiO_(2) coatings varied in the same pattern with the anatase content variation in Nd:TiO_(2) coatings.The photocatalytic experiment results show that the photocatalytic activity of Nd:TiO_(2) coatings can be greatly enhanced with moderate amount of Nd^(3+).However,excessive amount of Nd^(3+)does not have an effective impact on the photoctalytic activity improvement.展开更多
Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that...Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density.展开更多
The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past...The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER.展开更多
Exploiting efficient urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)catalysts are significant for energy-saving H2 production through urea-assisted water electrolysis,but it is still challenging.Herei...Exploiting efficient urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)catalysts are significant for energy-saving H2 production through urea-assisted water electrolysis,but it is still challenging.Herein,carbon-encapsulated CoNi coupled with CoNiMoO(CoNi@CN-CoNiMoO)is prepared by solvothermal method and calcination to enhance the activity/stability of urea-assisted water electrolysis at large current density.It exhibits good activity for UOR(E10/1,000=1.29/1.40 V)and HER(E-10/-1000=-45/-245 mV)in 1.0 M KOH+0.5 M urea solution.For the UOR||HER system,CoNi@CN-CoNiMoO only needs 1.58 V at 500 mA cm-2 and shows good stability.Density functional theory calculation suggests that the strong electronic interaction at the interface between NiCo alloy and N-doping-carbon layers can optimize the adsorption/desorption energy of UOR/HER intermediates and accelerate the water dissociation,which can expedite urea decomposition and Volmer step,thus increasing the UOR and HER activity,respectively.This work provides a new solution to design UOR/HER catalysts for H2 production through urea-assisted water electrolysis.展开更多
The work investigates influence of the electrolyte conductivity on the onset of partial contact glow discharge electrolysis(CGDE)in a water electrolysis.Critical current density(CCD)and breakdown voltage were measured...The work investigates influence of the electrolyte conductivity on the onset of partial contact glow discharge electrolysis(CGDE)in a water electrolysis.Critical current density(CCD)and breakdown voltage were measured together with in situ observation of hydrogen bubble behavior,whose influence has not been focused on.For a fixed current during normal electrolysis,hydrogen coalescence adjacent to cathode surface was invigorated at a lower conductivity.Photographic analyses elucidated the hydrogen coalescence characteristics by quantifying size and population of detached hydrogen bubbles.The CCD increased about 104% within given range of conductivity(11.50-127.48 mS·cm^(-1))due to impaired bubble coalescence,which delays hydrogen film formation on the cathode.Meanwhile,decreasing trend of breakdown voltage was measured with increased conductivity showing maximum drop of 74%.It is concluded that onset of partial CGDE is directly affected by hydrodynamic bubble behaviors,whereas the electrolyte conductivity affects the bubble formation characteristics adjacent to cathode electrode.展开更多
Apparent critical current density(j_(Ac)^(a))of garnet all-solid-state lithium metal symmetric cells(ASSLSCs)is a fundamental parameter for designing all-solid-state lithium metal batteries.Nevertheless,how much the p...Apparent critical current density(j_(Ac)^(a))of garnet all-solid-state lithium metal symmetric cells(ASSLSCs)is a fundamental parameter for designing all-solid-state lithium metal batteries.Nevertheless,how much the possible maximum apparent current density that a given ASSLSC system can endure and how to reveal this potential still require study.Herein,a capacity perturbation strategy aiming to better measure the possible maximum j_(Ac)^(a)is proposed for the first time.With garnet-based plane-surface structure ASSLSCs as an exemplification,the j_(Ac)^(a)is quite small when the capacity is dramatically large.Under a perturbed capacity of 0.001 mA h cm^(-2),the j_(Ac)^(a)is determined to be as high as 2.35 mA cm^(-2)at room temperature.This investigation demonstrates that the capacity perturbation strategy is a feasible strategy for measuring the possible maximum j_(Ac)^(a)of Li/solid electrolyte interface,and hopefully provides good references to explore the critical current density of other types of electrochemical systems.展开更多
The hydrogen-iron(HyFe)flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries.However,its operation at high current density(high power...The hydrogen-iron(HyFe)flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries.However,its operation at high current density(high power)and over continuous cycling testing has yet to be demonstrated.In this paper,we discuss our design and demonstration of a water management strategy that supports high current and long cycling performance of a HyFe flow cell.Water molecules associated with the movement of protons from the iron electrode to the hydrogen electrode are sufficient to hydrate the membrane and electrode at a low current density of 100 mA cm^(-2)during the charge process.At higher charge current density,more aggressive measures must be taken to counter back-diffusion driven by the acid concentration gradient between the iron and hydrogen electrodes.Our water management approach is based on water vapor feeding in the hydrogen electrode,and water evaporation in the iron electrode,thus enabling the high current density operation of 300 mA cm^(-2).展开更多
Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density o...Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings.展开更多
Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique...Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique. The effects of current density on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated by energy dispersive X-ray spectroscopy(EDXS), anode polarization curves, quasi-stationary polarization(Tafel) curves, electrochemical impedance spectroscopy(EIS), scanning electron microscopy(SEM), and X-ray diffraction(XRD). Results reveal that the composite electrode obtained at 1 A/dm2 possesses the lowest overpotential(0.610 V at 500 A/m2) for oxygen evolution, the best electrocatalytic activity, the longest service life(360 h at 40 °C in 150 g/L H2SO4 solution under 2 A/cm2), and the lowest cell voltage(2.75 V at 500 A/m2). Furthermore, with increasing current density, the coating exhibits grain growth and the decrease of content of Mn O2. Only a slight effect on crystalline structure is observed.展开更多
AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs double-barrier resonant tunneling diodes (DBRTDs) grown on a semi-insulated GaAs substrate with molecular beam epitaxy is demonstrated. By sandwiching the In0.1 Ga0.9 As layer betwee...AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs double-barrier resonant tunneling diodes (DBRTDs) grown on a semi-insulated GaAs substrate with molecular beam epitaxy is demonstrated. By sandwiching the In0.1 Ga0.9 As layer between GaAs layers, potential wells beside the two sides of barrier are deepened, resulting in an increase of the peak-to-valley current ratio (PVCR) and a peak current density. A special shape of collector is designed in order to reduce contact resistance and non-uniformity of the current;as a result the total chrrent density in the device is increased. The use of thin barriers is also helpful for the improvement of the PVCR and the peak current density in DBRTDs. The devices exhibit a maximum PVCR of 13.98 and a peak current density of 89kA/cm^2 at room temperature.展开更多
Developing highly effective and stable non-noble metalbased bifunctional catalyst working at high current density is an urgent issue for water electrolysis(WE).Herein,we prepare the N-doped graphene-decorated NiCo all...Developing highly effective and stable non-noble metalbased bifunctional catalyst working at high current density is an urgent issue for water electrolysis(WE).Herein,we prepare the N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet grown on 3D nickel foam(NiCo@C-NiCoMoO/NF)for water splitting.NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotentials for hydrogen and oxygen evolution reaction(HER:39/266 mV;OER:260/390 mV)at±10 and±1000 mA cm^(−2).More importantly,in 6.0 M KOH solution at 60℃ for WE,it only requires 1.90 V to reach 1000 mA cm−2 and shows excellent stability for 43 h,exhibiting the potential for actual application.The good performance can be assigned to N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet,which not only increase the intrinsic activity and expose abundant catalytic activity sites,but also enhance its chemical and mechanical stability.This work thus could provide a promising material for industrial hydrogen production.展开更多
Oxide coatings were prepared on magnesium alloys in electrolyte solution of Na2SiO3 at different current densities(3,4 and 5 A/cm 2 )with micro-arc oxidation process.X-ray diffractometry(XRD)results show that the oxid...Oxide coatings were prepared on magnesium alloys in electrolyte solution of Na2SiO3 at different current densities(3,4 and 5 A/cm 2 )with micro-arc oxidation process.X-ray diffractometry(XRD)results show that the oxide coatings formed on magnesium alloys are mainly composed of MgO and MgAl2O4 phases;in addition,the content of MgO increases with increasing the current density.The morphology and surface roughness of the coatings were characterized by confocal laser scanning microscopy (CLSM).The results show that the surface roughness(Ra)decreases with increasing the current density.Moreover,the electrochemical corrosion results prove that the MgO coating produced in the electrolyte Na2SiO3 at current density of 5 A/cm 2 shows the best corrosion resistance.展开更多
In this work, analysis of electromigration-induced void morphological evolution in solder interconnects is performed based on mass diffusion theory. The analysis is conducted for three typical experimentally observed ...In this work, analysis of electromigration-induced void morphological evolution in solder interconnects is performed based on mass diffusion theory. The analysis is conducted for three typical experimentally observed void shapes: circular, ellipse, and cardioid. Void morphological evolution is governed by the competition between the electric field and surface capillary force. In the developed model, both the electric field and capillary force on the void's surface are solved analytically. Based on the mass conversation principle, the normal velocity on the void surface during diffusion is obtained. The void morphological evolution behavior is investigated, and a physical model is developed to predict void collapse to a crack or to split into sub-voids under electric current. It is noted that when the electric current is being applied from the horizontal direction, a circular void may either move stably along the electric current direction or collapse to a finger shape, depending on the relative magnitude of the electric current and surface capillary force. However, the elliptical-shaped void will elongate along the electric current direction and finally collapse to the finger shape. On the other hand, the cardioid-shaped void could bifurcate into two sub-voids when the electric current reaches a critical value. The theoretical predictions agree well with the experimental observations.展开更多
The α-PbO2 electrodes are prepared by anodic electrodeposition on Al/conductive coating electrode from alkaline plumbite solutions in order to investigate the effect of the different current densities on the properti...The α-PbO2 electrodes are prepared by anodic electrodeposition on Al/conductive coating electrode from alkaline plumbite solutions in order to investigate the effect of the different current densities on the properties of α-PbO2 electrodes. The physic- ochemical properties of the α-PbO2 electrodes are analyzed by using SEM, EDS, XRD, Tafel plot, linear sweep voltammetry (LSV) and A.C. impedance. A compact and uniform layer of lead dioxide :)vas obtained at the current density of 3 mA.cm-2. A further increase in current density results in smaller particles with high porosity. EDS and XRD analyses have shown that the PbO2 deposited in alkaline conditions is highly non stoichiometric, and the PbO impurities are formed on the surface layer besides the α-PbO2. The corrosion resistance of α-PbO2 at the low current density is superior to that of the high current density. It can be attributed to a porous layer of deposited films at high current densities in aqueous Zn2+ 50 g·L^-1, H2SO4 150 When used as anodes for oxygen evolution g·L^-1, the Al/conductive coating/α-PbO2 exhibits lower potential compared to Pb electrode. Al/conductive coating/α-PbO2 electrode with the best electrocatalytic activity was obtained at current density of 1 mA·cm^-2. The lowest roughnest factor was obtained at 1 mA·cm^-2.展开更多
In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is gr...In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.展开更多
The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current den...The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current density distributions of lithium metal anodes induced by various engineering factors, consisting of uneven cathode, electrolyte distribution, and different tab positions, and their effects on the electrochemical performance are investigated theoretically and experimentally in pouch cells. The deviation of current density in lithium metal anodes ranges from 2.47% to 196.18% due to the different levels of uneven cathode materials. However, the deviation is just 13.60% for different electrolyte thicknesses between cathodes and anodes, even a ten-layer separator in some positions. The maximum deviation for variational tab positions is only 0.17%. The nonuniformity in current density distribution results in severe dendrite growth issues and poor electrochemical performance of LMBs. This work not only confirms the direct correlation between the uneven current density distribution and lithium deposition behaviors, but also points out the decisive effects of cathode surface roughness on current distribution of anodes, to which more attentions should be paid in practical applications of LMBs.展开更多
A magnetically insulated transmission line (MITL) is used to transmit high power electric pulses in large pulse power systems. However, current loss is unavoidable, especially when the current density is up to 1 MA/...A magnetically insulated transmission line (MITL) is used to transmit high power electric pulses in large pulse power systems. However, current loss is unavoidable, especially when the current density is up to 1 MA/cm. In the paper, the current loss of an MITL made of stainless steel, which is usually used in large pulse power generators, is experimentally studied, and possible mechanisms to explain the current loss of the MITL are analyzed and discussed. From the experimental results, the relationship between loss current density and input current density follows approximately a power law. The loss is also related to the configuration of the MITL.展开更多
The microplasma oxidation process of LY 12 Al alloy in Na2SiO3-KOH-NaAL2 system has been studied. The voltage-time curve of oxidation process is changed with the variation of current ...The microplasma oxidation process of LY 12 Al alloy in Na2SiO3-KOH-NaAL2 system has been studied. The voltage-time curve of oxidation process is changed with the variation of current densities. The voltage breakdown and hardness of coating increase with increasing current density. The phase composition, morphologies, element and the distribution of ceramic coating are investigated by XRD, EPMA.展开更多
A unified numerical model is developed to couple the plasma arc, weld pool and keyhole in a self consistent way. The plasma arc/anode interface and the melt/solid interface are treated specially, the VOF method is use...A unified numerical model is developed to couple the plasma arc, weld pool and keyhole in a self consistent way. The plasma arc/anode interface and the melt/solid interface are treated specially, the VOF method is used to trace the moving keyhole wall, and the fluid flow and heat transfer in both the plasma arc and weld pool are numerically simulated. The distributions of current density and arc pressure on the weld pool surface during the keyhole formation process are analyzed using the coupled model. The predicted arc pressure and current density are compared with the experimentally measured results, and both are in good agreement.展开更多
Plasma electrolytic oxidation(PEO) coatings were fabricated on 6063 aluminum alloy in a cheap and convenient electrolyte. The effect of different current densities, i e, 5, 10, 15, and 20 A/dm2on the microstructure an...Plasma electrolytic oxidation(PEO) coatings were fabricated on 6063 aluminum alloy in a cheap and convenient electrolyte. The effect of different current densities, i e, 5, 10, 15, and 20 A/dm2on the microstructure and corrosion behavior of coatings was comprehensively studied by scanning electron microscopy(SEM), stereoscopic microscopy, potentiodynamic polarization and electrochemical impedance spectroscopy(EIS), respectively. It is found that the pore density decreases and the pore size increases with increasing current density. The XRD results show that the coatings are only composed of α-Al2O3and γ-Al2O3. Potentiodynamic polarization test proves that the coating formed under 10 A/dm2possesses the best anticorrosion property. The long time EIS test shows that the coating under 10 A/dm2is able to protect the aluminum alloy substrate after long time of immersion in 0.59 M NaCl solution, which confirms the salt solution immersion test results in 2 M NaCl solution.展开更多
基金Supported by the Open Project Foundation of Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province (No. ZK220504)the Open Project Foundation of High-tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province (No. MAET202104)+1 种基金the Open Project Foundation of Jiangsu Wind Power Engineering Technology Center (No. ZK220302)the Qing Lan Project of Jiangsu Province,China。
文摘The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on quantity and increased on scale with the increasing current density.AFM results revealed that the roughness of the coatings increased with the increasing current density.Phase and composition analysis showed that the Nd:TiO_(2) coatings were mainly composed of anatase and rutile phase.And the anatase phase content has reached the maximum value at the current density of 250 m A/cm^(2).XPS results indicated that Ti2p spin-orbit components of the Nd:TiO_(2) coatings are shifted towards higher binding energy,compared with the pure TiO_(2) coating,suggesting that some of the Nd^(3+)ions are combined with TiO_(2) lattice and led to dislocation.Photocatalytic test showed that the photocatalytic activity of Nd:TiO_(2) coatings varied in the same pattern with the anatase content variation in Nd:TiO_(2) coatings.The photocatalytic experiment results show that the photocatalytic activity of Nd:TiO_(2) coatings can be greatly enhanced with moderate amount of Nd^(3+).However,excessive amount of Nd^(3+)does not have an effective impact on the photoctalytic activity improvement.
基金supported by National Natural Science Foundation of China (Nos. 12205033, 12105317, 11905022 and 11975062)Dalian Youth Science and Technology Project (No. 2022RQ039)+1 种基金the Fundamental Research Funds for the Central Universities (No. 3132023192)the Young Scientists Fund of the Natural Science Foundation of Sichuan Province (No. 2023NSFSC1291)
文摘Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density.
文摘The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER.
基金the National Natural Science Foundation of China(22162004)the Excellent Scholars and Innovation Team of Guangxi Universities,the Innovation Project of Guangxi Graduate Education(YCBZ2022038)the High-performance Computing Platform of Guangxi University。
文摘Exploiting efficient urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)catalysts are significant for energy-saving H2 production through urea-assisted water electrolysis,but it is still challenging.Herein,carbon-encapsulated CoNi coupled with CoNiMoO(CoNi@CN-CoNiMoO)is prepared by solvothermal method and calcination to enhance the activity/stability of urea-assisted water electrolysis at large current density.It exhibits good activity for UOR(E10/1,000=1.29/1.40 V)and HER(E-10/-1000=-45/-245 mV)in 1.0 M KOH+0.5 M urea solution.For the UOR||HER system,CoNi@CN-CoNiMoO only needs 1.58 V at 500 mA cm-2 and shows good stability.Density functional theory calculation suggests that the strong electronic interaction at the interface between NiCo alloy and N-doping-carbon layers can optimize the adsorption/desorption energy of UOR/HER intermediates and accelerate the water dissociation,which can expedite urea decomposition and Volmer step,thus increasing the UOR and HER activity,respectively.This work provides a new solution to design UOR/HER catalysts for H2 production through urea-assisted water electrolysis.
基金sponsored by the Korean Ministry of Science and ICT(MSIT)supported by nuclear Research&Development program grant funded by the National Research Foundation(NRF)(2021M2D1A1084838)。
文摘The work investigates influence of the electrolyte conductivity on the onset of partial contact glow discharge electrolysis(CGDE)in a water electrolysis.Critical current density(CCD)and breakdown voltage were measured together with in situ observation of hydrogen bubble behavior,whose influence has not been focused on.For a fixed current during normal electrolysis,hydrogen coalescence adjacent to cathode surface was invigorated at a lower conductivity.Photographic analyses elucidated the hydrogen coalescence characteristics by quantifying size and population of detached hydrogen bubbles.The CCD increased about 104% within given range of conductivity(11.50-127.48 mS·cm^(-1))due to impaired bubble coalescence,which delays hydrogen film formation on the cathode.Meanwhile,decreasing trend of breakdown voltage was measured with increased conductivity showing maximum drop of 74%.It is concluded that onset of partial CGDE is directly affected by hydrodynamic bubble behaviors,whereas the electrolyte conductivity affects the bubble formation characteristics adjacent to cathode electrode.
基金the financial support from the Natural Science Foundation for Distinguished Young Scholars of Hunan Province(2020JJ2047)the science and technology innovation Program of Hunan Province(2022RC3048)+2 种基金the Program of Huxiang Young Talents(2019RS2002)the Innovation-Driven Project of Central South University(2020CX027)the Fundamental Research Funds for the Central Universities of Central South University(2021zzts0125)。
文摘Apparent critical current density(j_(Ac)^(a))of garnet all-solid-state lithium metal symmetric cells(ASSLSCs)is a fundamental parameter for designing all-solid-state lithium metal batteries.Nevertheless,how much the possible maximum apparent current density that a given ASSLSC system can endure and how to reveal this potential still require study.Herein,a capacity perturbation strategy aiming to better measure the possible maximum j_(Ac)^(a)is proposed for the first time.With garnet-based plane-surface structure ASSLSCs as an exemplification,the j_(Ac)^(a)is quite small when the capacity is dramatically large.Under a perturbed capacity of 0.001 mA h cm^(-2),the j_(Ac)^(a)is determined to be as high as 2.35 mA cm^(-2)at room temperature.This investigation demonstrates that the capacity perturbation strategy is a feasible strategy for measuring the possible maximum j_(Ac)^(a)of Li/solid electrolyte interface,and hopefully provides good references to explore the critical current density of other types of electrochemical systems.
基金support primarily from the U.S.Department of Energy Advanced Research Projects Agency-Energy 2015 OPEN program under Contract No.67995support by Energy Storage Materials Initiative(ESMI),which is a Laboratory Directed Research and Development Project at Pacific Northwest National Laboratory(PNNL).PNNL is a multiprogram national laboratory operated for the U.S.Department of Energy(DOE)by Battelle Memorial Institute under Contract no.DE-AC05-76RL01830.
文摘The hydrogen-iron(HyFe)flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries.However,its operation at high current density(high power)and over continuous cycling testing has yet to be demonstrated.In this paper,we discuss our design and demonstration of a water management strategy that supports high current and long cycling performance of a HyFe flow cell.Water molecules associated with the movement of protons from the iron electrode to the hydrogen electrode are sufficient to hydrate the membrane and electrode at a low current density of 100 mA cm^(-2)during the charge process.At higher charge current density,more aggressive measures must be taken to counter back-diffusion driven by the acid concentration gradient between the iron and hydrogen electrodes.Our water management approach is based on water vapor feeding in the hydrogen electrode,and water evaporation in the iron electrode,thus enabling the high current density operation of 300 mA cm^(-2).
基金Project(51371039)supported by the National Natural Science Foundation of China
文摘Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings.
基金Projects(51004056,51004057)supported by the National Natural Science Foundation of ChinaProject(KKZ6201152009)supported by the Opening Foundation of Key Laboratory of Inorganic Coating Materials,Chinese Academy of Sciences+2 种基金Project(2010ZC052)supported by the Applied Basic Research Foundation of Yunnan Province,ChinaProject(20125314110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(2010247)supported by Analysis&Testing Foundation of Kunming University of Science and Technology,China
文摘Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique. The effects of current density on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated by energy dispersive X-ray spectroscopy(EDXS), anode polarization curves, quasi-stationary polarization(Tafel) curves, electrochemical impedance spectroscopy(EIS), scanning electron microscopy(SEM), and X-ray diffraction(XRD). Results reveal that the composite electrode obtained at 1 A/dm2 possesses the lowest overpotential(0.610 V at 500 A/m2) for oxygen evolution, the best electrocatalytic activity, the longest service life(360 h at 40 °C in 150 g/L H2SO4 solution under 2 A/cm2), and the lowest cell voltage(2.75 V at 500 A/m2). Furthermore, with increasing current density, the coating exhibits grain growth and the decrease of content of Mn O2. Only a slight effect on crystalline structure is observed.
文摘AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs double-barrier resonant tunneling diodes (DBRTDs) grown on a semi-insulated GaAs substrate with molecular beam epitaxy is demonstrated. By sandwiching the In0.1 Ga0.9 As layer between GaAs layers, potential wells beside the two sides of barrier are deepened, resulting in an increase of the peak-to-valley current ratio (PVCR) and a peak current density. A special shape of collector is designed in order to reduce contact resistance and non-uniformity of the current;as a result the total chrrent density in the device is increased. The use of thin barriers is also helpful for the improvement of the PVCR and the peak current density in DBRTDs. The devices exhibit a maximum PVCR of 13.98 and a peak current density of 89kA/cm^2 at room temperature.
基金supported by the National Natural Science Foundation of China(21872040)the Hundred Talents Program of Guangxi Universitiesthe Excellent Scholars and Innovation Team of Guangxi Universities。
文摘Developing highly effective and stable non-noble metalbased bifunctional catalyst working at high current density is an urgent issue for water electrolysis(WE).Herein,we prepare the N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet grown on 3D nickel foam(NiCo@C-NiCoMoO/NF)for water splitting.NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotentials for hydrogen and oxygen evolution reaction(HER:39/266 mV;OER:260/390 mV)at±10 and±1000 mA cm^(−2).More importantly,in 6.0 M KOH solution at 60℃ for WE,it only requires 1.90 V to reach 1000 mA cm−2 and shows excellent stability for 43 h,exhibiting the potential for actual application.The good performance can be assigned to N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet,which not only increase the intrinsic activity and expose abundant catalytic activity sites,but also enhance its chemical and mechanical stability.This work thus could provide a promising material for industrial hydrogen production.
基金Project(20080505)supported by Science and Technology Department of Jilin Province,China
文摘Oxide coatings were prepared on magnesium alloys in electrolyte solution of Na2SiO3 at different current densities(3,4 and 5 A/cm 2 )with micro-arc oxidation process.X-ray diffractometry(XRD)results show that the oxide coatings formed on magnesium alloys are mainly composed of MgO and MgAl2O4 phases;in addition,the content of MgO increases with increasing the current density.The morphology and surface roughness of the coatings were characterized by confocal laser scanning microscopy (CLSM).The results show that the surface roughness(Ra)decreases with increasing the current density.Moreover,the electrochemical corrosion results prove that the MgO coating produced in the electrolyte Na2SiO3 at current density of 5 A/cm 2 shows the best corrosion resistance.
基金supported by the National Natural Science Foundation of China (Grant 11572249)the Aerospace Technology Foundation (Grant N2014KC0068)the Aeronautical Science Foundation of China (Grant N2014KC0073)
文摘In this work, analysis of electromigration-induced void morphological evolution in solder interconnects is performed based on mass diffusion theory. The analysis is conducted for three typical experimentally observed void shapes: circular, ellipse, and cardioid. Void morphological evolution is governed by the competition between the electric field and surface capillary force. In the developed model, both the electric field and capillary force on the void's surface are solved analytically. Based on the mass conversation principle, the normal velocity on the void surface during diffusion is obtained. The void morphological evolution behavior is investigated, and a physical model is developed to predict void collapse to a crack or to split into sub-voids under electric current. It is noted that when the electric current is being applied from the horizontal direction, a circular void may either move stably along the electric current direction or collapse to a finger shape, depending on the relative magnitude of the electric current and surface capillary force. However, the elliptical-shaped void will elongate along the electric current direction and finally collapse to the finger shape. On the other hand, the cardioid-shaped void could bifurcate into two sub-voids when the electric current reaches a critical value. The theoretical predictions agree well with the experimental observations.
基金supported by the Author of National Excellent Doctoral Dissertation of China (No.20050053)Analysis and Measurement Research Fund(2007-21) of Kunming University of Science and Technology
文摘The α-PbO2 electrodes are prepared by anodic electrodeposition on Al/conductive coating electrode from alkaline plumbite solutions in order to investigate the effect of the different current densities on the properties of α-PbO2 electrodes. The physic- ochemical properties of the α-PbO2 electrodes are analyzed by using SEM, EDS, XRD, Tafel plot, linear sweep voltammetry (LSV) and A.C. impedance. A compact and uniform layer of lead dioxide :)vas obtained at the current density of 3 mA.cm-2. A further increase in current density results in smaller particles with high porosity. EDS and XRD analyses have shown that the PbO2 deposited in alkaline conditions is highly non stoichiometric, and the PbO impurities are formed on the surface layer besides the α-PbO2. The corrosion resistance of α-PbO2 at the low current density is superior to that of the high current density. It can be attributed to a porous layer of deposited films at high current densities in aqueous Zn2+ 50 g·L^-1, H2SO4 150 When used as anodes for oxygen evolution g·L^-1, the Al/conductive coating/α-PbO2 exhibits lower potential compared to Pb electrode. Al/conductive coating/α-PbO2 electrode with the best electrocatalytic activity was obtained at current density of 1 mA·cm^-2. The lowest roughnest factor was obtained at 1 mA·cm^-2.
基金The authors wish to express their gratitude to the financial support to this project from the project foundation of the National Key Laboratory of Advanced Welding Production Technology of Harbin Institute of Technology and the US National Science Foundation under grant No.DMI 9812981
文摘In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.
基金supported by the National Natural Science Foundation of China (22075029, 22179070, U1932220)。
文摘The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current density distributions of lithium metal anodes induced by various engineering factors, consisting of uneven cathode, electrolyte distribution, and different tab positions, and their effects on the electrochemical performance are investigated theoretically and experimentally in pouch cells. The deviation of current density in lithium metal anodes ranges from 2.47% to 196.18% due to the different levels of uneven cathode materials. However, the deviation is just 13.60% for different electrolyte thicknesses between cathodes and anodes, even a ten-layer separator in some positions. The maximum deviation for variational tab positions is only 0.17%. The nonuniformity in current density distribution results in severe dendrite growth issues and poor electrochemical performance of LMBs. This work not only confirms the direct correlation between the uneven current density distribution and lithium deposition behaviors, but also points out the decisive effects of cathode surface roughness on current distribution of anodes, to which more attentions should be paid in practical applications of LMBs.
基金supported by National Natural Science Foundation of China(No.10905047)
文摘A magnetically insulated transmission line (MITL) is used to transmit high power electric pulses in large pulse power systems. However, current loss is unavoidable, especially when the current density is up to 1 MA/cm. In the paper, the current loss of an MITL made of stainless steel, which is usually used in large pulse power generators, is experimentally studied, and possible mechanisms to explain the current loss of the MITL are analyzed and discussed. From the experimental results, the relationship between loss current density and input current density follows approximately a power law. The loss is also related to the configuration of the MITL.
文摘The microplasma oxidation process of LY 12 Al alloy in Na2SiO3-KOH-NaAL2 system has been studied. The voltage-time curve of oxidation process is changed with the variation of current densities. The voltage breakdown and hardness of coating increase with increasing current density. The phase composition, morphologies, element and the distribution of ceramic coating are investigated by XRD, EPMA.
基金The authors are grateful to the financial support for this project from the National Natural Science Foundation of China (No. 50936003 ).
文摘A unified numerical model is developed to couple the plasma arc, weld pool and keyhole in a self consistent way. The plasma arc/anode interface and the melt/solid interface are treated specially, the VOF method is used to trace the moving keyhole wall, and the fluid flow and heat transfer in both the plasma arc and weld pool are numerically simulated. The distributions of current density and arc pressure on the weld pool surface during the keyhole formation process are analyzed using the coupled model. The predicted arc pressure and current density are compared with the experimentally measured results, and both are in good agreement.
基金Funded by the National Natural Science Foundation of China(Nos.51371039 and 51871031)
文摘Plasma electrolytic oxidation(PEO) coatings were fabricated on 6063 aluminum alloy in a cheap and convenient electrolyte. The effect of different current densities, i e, 5, 10, 15, and 20 A/dm2on the microstructure and corrosion behavior of coatings was comprehensively studied by scanning electron microscopy(SEM), stereoscopic microscopy, potentiodynamic polarization and electrochemical impedance spectroscopy(EIS), respectively. It is found that the pore density decreases and the pore size increases with increasing current density. The XRD results show that the coatings are only composed of α-Al2O3and γ-Al2O3. Potentiodynamic polarization test proves that the coating formed under 10 A/dm2possesses the best anticorrosion property. The long time EIS test shows that the coating under 10 A/dm2is able to protect the aluminum alloy substrate after long time of immersion in 0.59 M NaCl solution, which confirms the salt solution immersion test results in 2 M NaCl solution.