期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Current Density Distribution in Keyhole Double-Sided Arc Welding 被引量:3
1
作者 JunshengSUN ChuansongWU +1 位作者 MinZHANG HouxiaoWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第2期228-231,共4页
In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is gr... In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole. 展开更多
关键词 PAW+TIG double-sided arc welding Surface deformation of the weldpool KEYHOLE current density distribution
下载PDF
Plating current density distribution of lithium metal anodes in pouch cells 被引量:2
2
作者 Shi-Jie Yang Xin Shen +5 位作者 Xin-Bing Cheng Feng-Ni Jiang Rui Zhang He Liu Lei Liu Hong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期70-75,I0003,共7页
The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current den... The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current density distributions of lithium metal anodes induced by various engineering factors, consisting of uneven cathode, electrolyte distribution, and different tab positions, and their effects on the electrochemical performance are investigated theoretically and experimentally in pouch cells. The deviation of current density in lithium metal anodes ranges from 2.47% to 196.18% due to the different levels of uneven cathode materials. However, the deviation is just 13.60% for different electrolyte thicknesses between cathodes and anodes, even a ten-layer separator in some positions. The maximum deviation for variational tab positions is only 0.17%. The nonuniformity in current density distribution results in severe dendrite growth issues and poor electrochemical performance of LMBs. This work not only confirms the direct correlation between the uneven current density distribution and lithium deposition behaviors, but also points out the decisive effects of cathode surface roughness on current distribution of anodes, to which more attentions should be paid in practical applications of LMBs. 展开更多
关键词 Pouch cell Lithium metal anode DENDRITE current density distribution Safety
下载PDF
Effects of mask wall angle on matrix-hole shape changes during electrochemical machining by mask 被引量:8
3
作者 李冬林 朱荻 +1 位作者 李寒松 刘金国 《Journal of Central South University》 SCIE EI CAS 2011年第4期1115-1120,共6页
The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was develo... The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was developed to predict the shape evolution during the ECM by mask.The current density distribution is sensitive to mask wall angle.The evolution of cavity is determined by the current density distribution of evolving workpiece surface.The maximum depth is away from the center of holes machined,which leads to the island appearing at the center of cavity for mask wall angles greater than or equal to 90°(β≥90°).The experimental system was established and the simulation results were experimentally verified.The results indicate that the simulation results of cavity shape are consistent with the actual ones.The experiments also show that the repetition accuracy of matrix-hole for β≥90° is higher than that for β<90°.A hole taper is diminished,and the machining accuracy is improved with the mask wall angle increasing. 展开更多
关键词 electrochemical machining matrix-hole machining accuracy current density distribution
下载PDF
Boundary Element Method (BEM) Analysis for Galvanic Corrosion of Hot Dip Galvanized Steel Immersed in Seawater 被引量:3
4
作者 Xiao Tang Yuzhi Zhang +1 位作者 Meng Liu Yan Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期194-198,共5页
A numerical analysis of galvanic corrosion of hot-dip galvanized steel immersed in seawater was presented. The analysis was based on the boundary element methods (BEMs) coupled with Newton-Raphson iterative techniqu... A numerical analysis of galvanic corrosion of hot-dip galvanized steel immersed in seawater was presented. The analysis was based on the boundary element methods (BEMs) coupled with Newton-Raphson iterative technique to treat the nonlinear boundary conditions, which were determined by the experimental polarization curves. Results showed that galvanic current density concentrates on the boundary of steel substrate and zinc coating, and the sacrificial protection of zinc coating to steel substrate results in overprotection of steel cathode. Not only oxygen reduction but also hydrogen reduction could occur as cathode reactions, which probably led up to the adsorption and absorption of hydrogen atoms. Flat galvanized steel tensile sample shows a brittle behavior similar to hydrogen embrittlement according to the SSRT (show strain rate test) in seawater. 展开更多
关键词 Galvanic corrosion BEM Hydrogen absorption Potential distribution current density distribution
下载PDF
Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs 被引量:2
5
作者 张鹏飞 张国钢 +2 位作者 董金龙 刘婉莹 耿英三 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第7期661-668,共8页
In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent ... In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a nonintrusive detecting system is described that combines the magneto-optic imaging(MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic(MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing(SA).Experiments were carried out for high current(2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc. 展开更多
关键词 arc current density distribution arc pattern inverse electromagnetic problem low-voltage switchgear magneto-optic imaging technique
下载PDF
Equivalent magnetic dipole method used to design gradient coil for unilateral magnetic resonance imaging
6
作者 Zheng Xu Xiang Lil +1 位作者 Pan Guo Jia-Min Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期545-550,共6页
The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this ... The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this study focuses on the design of gradient coil of unilateral magnet.The unilateral MRI system is used to image the local area above the magnet.The current density distribution of the gradient coil cannot be used as a series of superconducting nuclear magnetic resonance gradient coils,because the region of interest(ROI)and the wiring area of the unilateral magnet are both cylindrical side arc surfaces.Therefore,the equivalent magnetic dipole method is used to design the gradient coil,and the algorithm is improved for the special case of the wiring area and the ROI,so the X and Y gradient coils are designed.Finally,a flexible printed circuit board(PCB)is used to fabricate the gradient coil,and the magnetic field distribution of the ROI is measured by a Gauss meter,and the measured results match with the simulation results.The gradient linearities of x and y coils are 2.82%and 3.56%,respectively,less than 5%of the commercial gradient coil requirement. 展开更多
关键词 unilateral MRI equivalent magnetic dipole method gradient coil current density distribution
下载PDF
An 2d Analysis of Electromagnetic and Joule Heating Distribution in Electro-Slag Remelting Process
7
作者 ZHANG Wei-jun WANG Zi-kun +2 位作者 WANG Bo WANG Fang LI Rui-nan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S2期953-956,共4页
Electro-Slag Remelting(ESR)is a commonly used for the production of high-value-added alloys such as superalloys and specialty steels.In consideration of high trial costs and the complexity of the process,a steady-stat... Electro-Slag Remelting(ESR)is a commonly used for the production of high-value-added alloys such as superalloys and specialty steels.In consideration of high trial costs and the complexity of the process,a steady-state numerical model has been developed that accounts for electromagnetic phenomena and coupled heat in an axisymmetrical geometry.The model considers electromagnetic effects and heat transfer.First of all,Maxwell equations are solved to determine the magnetic flux density,current density and Joule heating.Especially,the skin effect is shown and discussed based on numerical results.It is shown that the current density distribution on the external surfaces of slag and ingot.In slag,due to the low electrical conductivity of slag,the current distribution changes,gathering on the end of electrode.Next,Joule heating distribution is calculated by the Joule law.Joule heating is mainly in the slag,because the electrical conductivity in the slag is much lower than that in the electrode and the ingot.The maximum joule heating is below the interface of electrode and slag. 展开更多
关键词 Electro-Slag Remelting numerical simulation electromagnetic distribution current density distribution
原文传递
固态锂金属电池中不均匀离子通量介导的正负极耦合失效机制 被引量:5
8
作者 郑越 张舒 +8 位作者 马君 孙富 Markus Osenberg AndréHilger Henning Markötter Fabian Wilde Ingo Manke 胡中波 崔光磊 《Science Bulletin》 SCIE EI CAS CSCD 2023年第8期813-825,M0004,共14页
本文通过联用无损三维同步辐射X射线断层扫描成像技术(SXCT)和其他非原位测试技术及有限元模拟,深入研究了LiNi0.8Co0.1Mn0.1O2|Li6PS5Cl|Li全固态电池的衰退机制.研究发现正极电化学-机械力学耦合失效诱导的反应异质性产生不均匀的锂... 本文通过联用无损三维同步辐射X射线断层扫描成像技术(SXCT)和其他非原位测试技术及有限元模拟,深入研究了LiNi0.8Co0.1Mn0.1O2|Li6PS5Cl|Li全固态电池的衰退机制.研究发现正极电化学-机械力学耦合失效诱导的反应异质性产生不均匀的锂离子通量并传输到负极,进而导致不均匀的锂沉积、溶解行为及死锂的产生等.锂负极不均匀的电化学反应行为又反作用于正极并强化其反应异质性,形成一种正负极衰退互相促进的正强化机制.随着电池继续循环,正负极的不均匀反应加剧造成其结构破坏,同时正负极体积缩胀引起电解质巨大塑性变形,最终致使电池失效.对比实验表明采用LiZr_(2)(PO_(4))_(3)(LZP)对正极进行改性,不仅有效抑制了正极的电化学-机械力学耦合失效,而且显著提高了负极锂沉积-溶解均匀性和电解质的结构完整性.该研究首次提出了全固态金属锂电池正负极相互依赖、相互关联的失效机制,为提升全固态金属锂电池性能提供了新思路. 展开更多
关键词 current density distribution Lithium ion flux Solid-state lithium metal batteries Codependent failure mechanism Cathode deactivation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部