To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direc...To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.展开更多
In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the(E, T) phase diagram of the studied pr...In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the(E, T) phase diagram of the studied product can be obtained.In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.展开更多
In order to research the bond properties between corroded reinforcement bars and concrete,reinforcement bars with different diameters and different types and concrete with different strength levels were treated specia...In order to research the bond properties between corroded reinforcement bars and concrete,reinforcement bars with different diameters and different types and concrete with different strength levels were treated specially with all soaking and impressed current method,and the bond properties were measured with the pull-out test.The comparative analysis of the bond properties of corroded reinforcement bars was carried out.The results showed that the types of reinforcement bars and concrete had great influence on the bond strength.The corrosion and volume expansion of reinforcement bars made concrete in tensile condition,which tended to produce cracks in parallel reinforced direction.The typical bond failure of plain reinforcement bars was pull-out,while the typical bond failure of ribbed reinforcement bars was split.The bond strength between corroded reinforcement bars and concrete increased with the increase of concrete strength.The bond strength of plain and ribbed reinforcement bars showed a decreasing trend after the first increase with the increase of the extent of corrosion.Through the test,the coefficients of the bond strength of plain and ribbed reinforcement bars were given,respectively.展开更多
This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power...This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power heating part, which is driven by wind power and vertical axis wind turbines and the design of magnet array rotor disc rotation, namely, magnetic field rotating, induced eddy current in the stator, so as to generate heat. The second part is the solar heating part. This works has broad market prospect, which provides a new idea for large-scaled heating method.展开更多
The paper proposes an experimental method of material inspection,which is based on digital processing of multi-frequency eddy current measurement data.The influences of various factors(conductivity,the gap between the...The paper proposes an experimental method of material inspection,which is based on digital processing of multi-frequency eddy current measurement data.The influences of various factors(conductivity,the gap between the sample surface and the sensor,the thickness of the sample) on the obtained hodographs are examined by taking the aluminum alloys for example,and the possibility of separation of various factors is analyzed.The results obtained are indicative of how much promise the proposed method offers for the inspection and testing of products made of aluminum alloys.展开更多
Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption c...Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption chiller on both driving and cooling fluid sides.The system is modeled by using the heat current method to fully consider nonlinear heat transfer and heat-work conversion constraints and resolve its behavior accurately.The off-design system simulation is performed next,showing that the fluid inlet temperatures and flow rates of cooling water as well as RORC working fluid strongly affect system performance.The off-design operation even becomes infeasible when parameters deviate from nominal values largely due to limited heat transfer capability of components,highlighting the importance of considering heat transfer constraints via heat current method.Design optimization aiming to minimize the total thermal conductance is also conducted.RORC efficiency increases by 7.9%and decreases by 12.4%after optimization,with the hot fluid inlet temperature increase from 373.15 to 403.15 K and mass flow rate ranges from 10 to 30 kg/s,emphasizing the necessity of balancing system cost and performance.展开更多
Liquid cooling systems in data centers have been attracting more attentions due to its better cooling capability and less energy consumption. In order to propose an effective optimization method for the operation of i...Liquid cooling systems in data centers have been attracting more attentions due to its better cooling capability and less energy consumption. In order to propose an effective optimization method for the operation of indirect liquid cooling systems, this paper first constructs an experiment platform and applies the heat current method to build the global heat transfer constraints of the whole system. Particularly, the thermal conductance of each heat exchanger under different working conditions is predicted by the Artificial Neural Networks(ANN) trained by the historical data. On this basis, combining the heat transfer and fluid flow constraints together with the Lagrange multiplier method builds the optimization model with the objective of minimum pumping power consumption(PPC), solving which by the solution strategy designed obtains the optimal frequencies of the variable frequency pumps(VFPs). Operating with the optimal and other feasible operating conditions validates the optimization model. Meanwhile, the experiments with variable heat loads and flow resistances provide some guidelines for the optimal system operation. For instance, to address heat load increase of a branch, it needs to increase the frequencies of the VFPs, not only the corresponding hot loop but also the whole cold loop.展开更多
Electrochemical impedance spectroscopy (EIS) is widely used in fuel cell impedance analysis. However, for ohmic resistance (R Ω), EIS has some disadvantages such as long test period and complex data analysis with equ...Electrochemical impedance spectroscopy (EIS) is widely used in fuel cell impedance analysis. However, for ohmic resistance (R Ω), EIS has some disadvantages such as long test period and complex data analysis with equivalent circuits. Therefore, the current interruption method is explored to measure the value of RΩ in direct methanol fuel cells (DMFC) at different temperatures and current densities. It is found that RΩ decreases as temperature increase, and decreases initially and then increases as current density increases. These results are consistent with those measured by the EIS technique. In most cases, the ohmic resistances with current interruption (R iR ) are larger than those with EIS (R EIS ), but the difference is small, in the range from –0.848% to 5.337%. The errors of R iR at high current densities are less than those of R EIS . Our results show that the R iR data are reliable and easy to obtain in the measurement of ohmic resistance in DMFC.展开更多
Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by ...Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by some numerical methods which will produce an enormous calculation amount. In order to overcome this shortcoming, the reciprocity theorem (RT) and the method of equivalent edge currents (MEC) are used in this paper. Due to the advantage of RT, the difficulty in computing the secondary scattered fields is reduced. Simultaneously, MEC, a high-frequency method with edge diffraction considered, is used to calculate the scattered field from the cone-cylinder target with a high accuracy and efficiency. The backscattered field and the polarization currents of the rough sea surface are evaluated by the Kirchhoff approximation (KA) method and physical optics (PO) method, respectively. The effects of the backscattering radar cross section (RCS) and the Doppler spectrum on the size of the target and the windspeed of the sea surface for different incident angles are analysed in detail.展开更多
In order to determine the design tide levels in the areas without measured tide level data, especially in the areas where it is difficult to measure tidal levels, a calculation method based on a numerical model of tid...In order to determine the design tide levels in the areas without measured tide level data, especially in the areas where it is difficult to measure tidal levels, a calculation method based on a numerical model of tidal current is proposed. The essentials of the method are described, and its application is illustrated with an example. The results of the application show that the design tide levels calculated by the method are close to those determined by long-time measured tide level data, and its calculation precision is high, so it is feasible to use the method to determine the design tide levels in the areas.展开更多
The Volume-Surface Current Continuity Method (VSCCM) is presented to analyze electromagnetic radiation from microstrip antenna. The microstrip antenna is discretized into small triangular patches on conducting surface...The Volume-Surface Current Continuity Method (VSCCM) is presented to analyze electromagnetic radiation from microstrip antenna. The microstrip antenna is discretized into small triangular patches on conducting surface and tetrahedral volume cells in dielectric region. The Method of Moments (MoM) is applied to solve the integral equation. An equation contains the restriction relation between the volume and surface current coefficient is derived from the current continuity equation at those parts where the conducting surface is in contact with the dielectric material. A simple equivalent strip model is introduced in the treatment of the feeding probe in VSCCM. The VSCCM can reduce the unknowns required to be solved in MoM, as well as the condition number of the matrix equation. Numerical results are given to validate the accuracy and efficiency of this method.展开更多
Based on the review of present force coefficients estimation methods, a new method in the frequency domain, revised cross-spectrum estimation method, is presented in this paper. Some experiments on the wave-current fo...Based on the review of present force coefficients estimation methods, a new method in the frequency domain, revised cross-spectrum estimation method, is presented in this paper. Some experiments on the wave-current force on inclined cylinders are also described and the wave current force coefficients are estimated by the revised cross-spectrum estimation method. From the results, it is found that the wave and current directions have some regular effect on the coefficients. According to the results, some empirical formulas are obtained for converting the wave-current force coefficients on inclined cylinders into a unified coefficient. Comparisons show that the unified coefficients are in good agreement with other results.展开更多
A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especia...A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.展开更多
To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Tindikala-Boutou (Eastern-Cameroon) area al...To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Tindikala-Boutou (Eastern-Cameroon) area along the Kadey River have been made through electrical sounding and profiling following Schlumberger array. The instrument is the resistive meter Syscal Junior 48 (IRIS Instrument). The data have been processed and modelled with Res2Dinv and Winsev softwares, and then interpolated with Surfer software. Investigation method used is the Direct Current (DC) method. Interpretations and analyses of results from the investigation method highlight weak zones or conductive discontinuities. The latter has been identified as shear zones within granitic structures of the Precambrian basement, according to the geologic and tectonic background of the area. The structural trend of these shear zones is E-W approximately. The mineralization characterized by conductive zones proves the presence of clay minerals disseminated in weathered quartz vein, which cross the shear zones. The intense activities of gold washers encountered in the studied area are able to attest the presence of clay minerals concentrations.展开更多
The incorrect surface current may be obtained in the vicinity of the resonant frequencies when the method of moments is used to solve either the electric or magnetic field surface integral equation. An effective met...The incorrect surface current may be obtained in the vicinity of the resonant frequencies when the method of moments is used to solve either the electric or magnetic field surface integral equation. An effective method is presented to determine the correct surface current, i.e., the correct surface current, i.e., the correct surface current is composed of the non-resonant mode current and the normalized resonant mode current multiplied by an unknown complex factor. The unknown complex factor can be obtained by employing the condition that the total field inside the conducting closed body must be zero at specified interior points. A numerical example is given for an infinitely long and perfectly conducting circular cylinder at the interior resonance, and the calculated surface currents are in good agreement with the analytical ones. The validity and accuracy of the presented method is thus verified.展开更多
A great amount of work addressed methods for predicting the battery lifetime in wireless sensor systems. In spite of these efforts, the reported experimental results demonstrate that the duty-cycle current average met...A great amount of work addressed methods for predicting the battery lifetime in wireless sensor systems. In spite of these efforts, the reported experimental results demonstrate that the duty-cycle current average method, which is widely used to this aim, fails in accurately estimating the battery life time of most of the presented wireless sensor system applications. The aim of this paper is to experimentally assess the duty-cycle current average method in order to give more effective insight on the effectiveness of the method. An electronic metering system, based on a dedicated PCB, has been designed and developed to experimentally measure node current consumption profiles and charge extracted from the battery in two selected case studies. A battery lifetime measurement (during 30 days) has been carried out. Experimental results have been assessed and compared with estimations given by using the duty-cycle current average method. Based on the measurement results, we show that the assumptions on which the method is based do not hold in real operating cases. The rationality of the duty-cycle current average method needs reconsidering.展开更多
The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE s...The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.展开更多
After the field equations and the snonumuoo conditions between the interfaces for 3D eddy current problems Under various gauges were discussed, it was pointed cut in this paper that using the magnetic vector potentia...After the field equations and the snonumuoo conditions between the interfaces for 3D eddy current problems Under various gauges were discussed, it was pointed cut in this paper that using the magnetic vector potential A. the electric scalar potential and Coulomb gauge △ .A = 0 in eddy current regions and using the magntetic scalar potential Ω in the non-conducting regions are more suitable. All field equations, the boundary conditions, the interface continuity conditions and the corresponding variational principle of this method are also given展开更多
An improved method for computing the three-dimensional(3 D)first-order Lagrangian residual velocity(uL)is estab-lished.The method computes tidal body force using the harmonic constants of the zeroth-order tidal curren...An improved method for computing the three-dimensional(3 D)first-order Lagrangian residual velocity(uL)is estab-lished.The method computes tidal body force using the harmonic constants of the zeroth-order tidal current.Compared with using the tidal-averaging method to compute the tidal body force,the proposed method filters out the clutter other than the single-frequency tidal input from the open boundary and obtains uL that is more consistent with the analytic solution.Based on the new method,uL is calculated for a wide bay with a longitudinal topography.The strength and pattern of uL are mostly determined by the parts of the tidal body force related to the vertical mixing of the Stokes’drift and the Coriolis effect,with a minor contribution from the advection effect.The geometrical shape of the bay can influence uL through the topographic gradient.The magnitude of uL increases with the increases in tidal energy input and vertical eddy viscosity and decreases in terms of the bottom friction coefficient.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41574127 and 41174104)the National Key Technology R&D Program for the 13th five-year plan(No.2016ZX05018006-006)
文摘To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.
文摘In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the(E, T) phase diagram of the studied product can be obtained.In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.
基金Supported by National Science and Technology Support Program(No.2012BAJ16B05)Program for Liaoning Excellent Talents in University(No.LJQ2011061)
文摘In order to research the bond properties between corroded reinforcement bars and concrete,reinforcement bars with different diameters and different types and concrete with different strength levels were treated specially with all soaking and impressed current method,and the bond properties were measured with the pull-out test.The comparative analysis of the bond properties of corroded reinforcement bars was carried out.The results showed that the types of reinforcement bars and concrete had great influence on the bond strength.The corrosion and volume expansion of reinforcement bars made concrete in tensile condition,which tended to produce cracks in parallel reinforced direction.The typical bond failure of plain reinforcement bars was pull-out,while the typical bond failure of ribbed reinforcement bars was split.The bond strength between corroded reinforcement bars and concrete increased with the increase of concrete strength.The bond strength of plain and ribbed reinforcement bars showed a decreasing trend after the first increase with the increase of the extent of corrosion.Through the test,the coefficients of the bond strength of plain and ribbed reinforcement bars were given,respectively.
文摘This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power heating part, which is driven by wind power and vertical axis wind turbines and the design of magnet array rotor disc rotation, namely, magnetic field rotating, induced eddy current in the stator, so as to generate heat. The second part is the solar heating part. This works has broad market prospect, which provides a new idea for large-scaled heating method.
基金supported by Program for Basic Scientific Research of the State Academies of Sciences for 2013e2020the RF Ministry of Education and Science (Contract No. 02.G25.31.0063)
文摘The paper proposes an experimental method of material inspection,which is based on digital processing of multi-frequency eddy current measurement data.The influences of various factors(conductivity,the gap between the sample surface and the sensor,the thickness of the sample) on the obtained hodographs are examined by taking the aluminum alloys for example,and the possibility of separation of various factors is analyzed.The results obtained are indicative of how much promise the proposed method offers for the inspection and testing of products made of aluminum alloys.
基金supported by National Natural Science Foundation of China(Grant No.52125604)。
文摘Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption chiller on both driving and cooling fluid sides.The system is modeled by using the heat current method to fully consider nonlinear heat transfer and heat-work conversion constraints and resolve its behavior accurately.The off-design system simulation is performed next,showing that the fluid inlet temperatures and flow rates of cooling water as well as RORC working fluid strongly affect system performance.The off-design operation even becomes infeasible when parameters deviate from nominal values largely due to limited heat transfer capability of components,highlighting the importance of considering heat transfer constraints via heat current method.Design optimization aiming to minimize the total thermal conductance is also conducted.RORC efficiency increases by 7.9%and decreases by 12.4%after optimization,with the hot fluid inlet temperature increase from 373.15 to 403.15 K and mass flow rate ranges from 10 to 30 kg/s,emphasizing the necessity of balancing system cost and performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.51836004 and 51621062)the Fundamental Research Funds of Shandong University(No.32240072064035)。
文摘Liquid cooling systems in data centers have been attracting more attentions due to its better cooling capability and less energy consumption. In order to propose an effective optimization method for the operation of indirect liquid cooling systems, this paper first constructs an experiment platform and applies the heat current method to build the global heat transfer constraints of the whole system. Particularly, the thermal conductance of each heat exchanger under different working conditions is predicted by the Artificial Neural Networks(ANN) trained by the historical data. On this basis, combining the heat transfer and fluid flow constraints together with the Lagrange multiplier method builds the optimization model with the objective of minimum pumping power consumption(PPC), solving which by the solution strategy designed obtains the optimal frequencies of the variable frequency pumps(VFPs). Operating with the optimal and other feasible operating conditions validates the optimization model. Meanwhile, the experiments with variable heat loads and flow resistances provide some guidelines for the optimal system operation. For instance, to address heat load increase of a branch, it needs to increase the frequencies of the VFPs, not only the corresponding hot loop but also the whole cold loop.
基金Supported by the National High Technology Research and Development Program of China (2007AA05Z150) the National Natural Science Foundation of China (50911140287 50973055)
文摘Electrochemical impedance spectroscopy (EIS) is widely used in fuel cell impedance analysis. However, for ohmic resistance (R Ω), EIS has some disadvantages such as long test period and complex data analysis with equivalent circuits. Therefore, the current interruption method is explored to measure the value of RΩ in direct methanol fuel cells (DMFC) at different temperatures and current densities. It is found that RΩ decreases as temperature increase, and decreases initially and then increases as current density increases. These results are consistent with those measured by the EIS technique. In most cases, the ohmic resistances with current interruption (R iR ) are larger than those with EIS (R EIS ), but the difference is small, in the range from –0.848% to 5.337%. The errors of R iR at high current densities are less than those of R EIS . Our results show that the R iR data are reliable and easy to obtain in the measurement of ohmic resistance in DMFC.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070701010)
文摘Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by some numerical methods which will produce an enormous calculation amount. In order to overcome this shortcoming, the reciprocity theorem (RT) and the method of equivalent edge currents (MEC) are used in this paper. Due to the advantage of RT, the difficulty in computing the secondary scattered fields is reduced. Simultaneously, MEC, a high-frequency method with edge diffraction considered, is used to calculate the scattered field from the cone-cylinder target with a high accuracy and efficiency. The backscattered field and the polarization currents of the rough sea surface are evaluated by the Kirchhoff approximation (KA) method and physical optics (PO) method, respectively. The effects of the backscattering radar cross section (RCS) and the Doppler spectrum on the size of the target and the windspeed of the sea surface for different incident angles are analysed in detail.
基金The National Key Fundamental Research and Development Program ("973" Program) of China under contract No. 2010CB429001
文摘In order to determine the design tide levels in the areas without measured tide level data, especially in the areas where it is difficult to measure tidal levels, a calculation method based on a numerical model of tidal current is proposed. The essentials of the method are described, and its application is illustrated with an example. The results of the application show that the design tide levels calculated by the method are close to those determined by long-time measured tide level data, and its calculation precision is high, so it is feasible to use the method to determine the design tide levels in the areas.
基金Supported by Natural Science Foundation of Fujian Province of China (2011J01348)the Science and Technique Major Program of Fujian Province (2010HZ-0004-1)
文摘The Volume-Surface Current Continuity Method (VSCCM) is presented to analyze electromagnetic radiation from microstrip antenna. The microstrip antenna is discretized into small triangular patches on conducting surface and tetrahedral volume cells in dielectric region. The Method of Moments (MoM) is applied to solve the integral equation. An equation contains the restriction relation between the volume and surface current coefficient is derived from the current continuity equation at those parts where the conducting surface is in contact with the dielectric material. A simple equivalent strip model is introduced in the treatment of the feeding probe in VSCCM. The VSCCM can reduce the unknowns required to be solved in MoM, as well as the condition number of the matrix equation. Numerical results are given to validate the accuracy and efficiency of this method.
文摘Based on the review of present force coefficients estimation methods, a new method in the frequency domain, revised cross-spectrum estimation method, is presented in this paper. Some experiments on the wave-current force on inclined cylinders are also described and the wave current force coefficients are estimated by the revised cross-spectrum estimation method. From the results, it is found that the wave and current directions have some regular effect on the coefficients. According to the results, some empirical formulas are obtained for converting the wave-current force coefficients on inclined cylinders into a unified coefficient. Comparisons show that the unified coefficients are in good agreement with other results.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51137004,61427806 and 51577184the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507
文摘A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
文摘To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Tindikala-Boutou (Eastern-Cameroon) area along the Kadey River have been made through electrical sounding and profiling following Schlumberger array. The instrument is the resistive meter Syscal Junior 48 (IRIS Instrument). The data have been processed and modelled with Res2Dinv and Winsev softwares, and then interpolated with Surfer software. Investigation method used is the Direct Current (DC) method. Interpretations and analyses of results from the investigation method highlight weak zones or conductive discontinuities. The latter has been identified as shear zones within granitic structures of the Precambrian basement, according to the geologic and tectonic background of the area. The structural trend of these shear zones is E-W approximately. The mineralization characterized by conductive zones proves the presence of clay minerals disseminated in weathered quartz vein, which cross the shear zones. The intense activities of gold washers encountered in the studied area are able to attest the presence of clay minerals concentrations.
文摘The incorrect surface current may be obtained in the vicinity of the resonant frequencies when the method of moments is used to solve either the electric or magnetic field surface integral equation. An effective method is presented to determine the correct surface current, i.e., the correct surface current, i.e., the correct surface current is composed of the non-resonant mode current and the normalized resonant mode current multiplied by an unknown complex factor. The unknown complex factor can be obtained by employing the condition that the total field inside the conducting closed body must be zero at specified interior points. A numerical example is given for an infinitely long and perfectly conducting circular cylinder at the interior resonance, and the calculated surface currents are in good agreement with the analytical ones. The validity and accuracy of the presented method is thus verified.
文摘A great amount of work addressed methods for predicting the battery lifetime in wireless sensor systems. In spite of these efforts, the reported experimental results demonstrate that the duty-cycle current average method, which is widely used to this aim, fails in accurately estimating the battery life time of most of the presented wireless sensor system applications. The aim of this paper is to experimentally assess the duty-cycle current average method in order to give more effective insight on the effectiveness of the method. An electronic metering system, based on a dedicated PCB, has been designed and developed to experimentally measure node current consumption profiles and charge extracted from the battery in two selected case studies. A battery lifetime measurement (during 30 days) has been carried out. Experimental results have been assessed and compared with estimations given by using the duty-cycle current average method. Based on the measurement results, we show that the assumptions on which the method is based do not hold in real operating cases. The rationality of the duty-cycle current average method needs reconsidering.
文摘The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.
文摘After the field equations and the snonumuoo conditions between the interfaces for 3D eddy current problems Under various gauges were discussed, it was pointed cut in this paper that using the magnetic vector potential A. the electric scalar potential and Coulomb gauge △ .A = 0 in eddy current regions and using the magntetic scalar potential Ω in the non-conducting regions are more suitable. All field equations, the boundary conditions, the interface continuity conditions and the corresponding variational principle of this method are also given
基金supported by the National Natural Science Foundation of China (No. 41676003)the NSFC Shandong Joint Fund for Marine Science Research Centers (No. U1606402)
文摘An improved method for computing the three-dimensional(3 D)first-order Lagrangian residual velocity(uL)is estab-lished.The method computes tidal body force using the harmonic constants of the zeroth-order tidal current.Compared with using the tidal-averaging method to compute the tidal body force,the proposed method filters out the clutter other than the single-frequency tidal input from the open boundary and obtains uL that is more consistent with the analytic solution.Based on the new method,uL is calculated for a wide bay with a longitudinal topography.The strength and pattern of uL are mostly determined by the parts of the tidal body force related to the vertical mixing of the Stokes’drift and the Coriolis effect,with a minor contribution from the advection effect.The geometrical shape of the bay can influence uL through the topographic gradient.The magnitude of uL increases with the increases in tidal energy input and vertical eddy viscosity and decreases in terms of the bottom friction coefficient.