Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) ...Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) data,evaluate its correlation with the accuracy of the retrieved stem curves, and subsequently, to assess the capacity of single-scan TLS to estimate stem curves.Methods: We proposed an index, occlusion rate, to quantify the occlusion level in TLS data. We then analyzed three influencing factors for the occlusion rate: the percentage of basal area near the scanning center, the scanning distance and the source of occlusions. Finally, we evaluated the effects of occlusions on stem curve estimates from single-scan TLS data.Results: The results showed that the correlations between the occlusion rate and the stem curve estimation accuracies were strong(r = 0.60–0.83), so was the correlations between the occlusion rate and its influencing factors(r = 0.84–0.99). It also showed that the occlusions from tree stems were the main factor of the low detection rate of stems, while the non-stem components mainly influenced the completeness of the retrieved stem curves.Conclusions: Our study demonstrates that the occlusions significantly affect the accuracy of stem curve retrieval from the single-scan TLS data in a typical-size(32 m × 32 m) forest plot. However, the single-scan mode has the capacity to accurately estimate the stem curve in a small forest plot(< 10 m × 10 m) or a plot with a lower occlusion rate, such as less than 35% in our tested datasets. The findings from this study are useful for guiding the practice of retrieving forest parameters using single-scan TLS data.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41671414,41971380,41331171 and 41171265)the National Key Research and Development Program of China(No.2016YFB0501404)
文摘Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) data,evaluate its correlation with the accuracy of the retrieved stem curves, and subsequently, to assess the capacity of single-scan TLS to estimate stem curves.Methods: We proposed an index, occlusion rate, to quantify the occlusion level in TLS data. We then analyzed three influencing factors for the occlusion rate: the percentage of basal area near the scanning center, the scanning distance and the source of occlusions. Finally, we evaluated the effects of occlusions on stem curve estimates from single-scan TLS data.Results: The results showed that the correlations between the occlusion rate and the stem curve estimation accuracies were strong(r = 0.60–0.83), so was the correlations between the occlusion rate and its influencing factors(r = 0.84–0.99). It also showed that the occlusions from tree stems were the main factor of the low detection rate of stems, while the non-stem components mainly influenced the completeness of the retrieved stem curves.Conclusions: Our study demonstrates that the occlusions significantly affect the accuracy of stem curve retrieval from the single-scan TLS data in a typical-size(32 m × 32 m) forest plot. However, the single-scan mode has the capacity to accurately estimate the stem curve in a small forest plot(< 10 m × 10 m) or a plot with a lower occlusion rate, such as less than 35% in our tested datasets. The findings from this study are useful for guiding the practice of retrieving forest parameters using single-scan TLS data.