Intuitionistic fuzzy starshaped sets (i.f.s.) is a generalized model of fuzzy starshaped set. By the definition of i.f.s., the intuitionistic fuzzy general starshaped sets (i.f.g.s.), intuitionistic fuzzy quasi-starsh...Intuitionistic fuzzy starshaped sets (i.f.s.) is a generalized model of fuzzy starshaped set. By the definition of i.f.s., the intuitionistic fuzzy general starshaped sets (i.f.g.s.), intuitionistic fuzzy quasi-starshaped sets (i.f.q-s.) and intuitionistic fuzzy pseudo-starshaped sets (i.f.p-s.) are proposed and the relationships among them are studied. The equivalent discrimination conditions of i.f.q-s. and i.f.p-s. are presented on the basis of their properties which are meaningful for the research of the generalized fuzzy starshaped sets. Moreover, the invariance of the two given fuzzy sets under the translation transformation and linear reversible transformation are discussed.展开更多
In small-sample problems, determining and controlling the errors of ordinary rigid convex set models are difficult. Therefore, a new uncertainty model called the fuzzy convex set(FCS) model is built and investigated...In small-sample problems, determining and controlling the errors of ordinary rigid convex set models are difficult. Therefore, a new uncertainty model called the fuzzy convex set(FCS) model is built and investigated in detail. An approach was developed to analyze the fuzzy properties of the structural eigenvalues with FCS constraints. Through this method, the approximate possibility distribution of the structural eigenvalue can be obtained. Furthermore, based on the symmetric F-programming theory, the conditional maximum and minimum values for the structural eigenvalue are presented, which can serve as nonfuzzy quantitative indicators for fuzzy problems. A practical application is provided to demonstrate the practicability and effectiveness of the proposed methods.展开更多
This paper gives the definition of λ-cut sets and studies the structure of fuzzy rough sets. Based on the concept of rough sets, this paper proposes the representation theorem of fuzzy rough sets.
The system of linear equations plays a vital role in real life problems such as optimization, economics, and engineering. The parameters of the system of linear equations are modeled by taking the experimental or obse...The system of linear equations plays a vital role in real life problems such as optimization, economics, and engineering. The parameters of the system of linear equations are modeled by taking the experimental or observation data. So the parameters of the system actually contain uncertainty rather than the crisp one. The uncertainties may be considered in term of interval or fuzzy numbers. In this paper, a detailed study of three solution techniques namely Classical Method, Extension Principle method and α-cuts and interval Arithmetic Method to solve the system of fuzzy linear equations has been done. Appropriate applications are given to illustrate each technique. Then we discuss the comparison of the different methods numerically and graphically.展开更多
Theory of the Cayley graphs is directly linked with the group theory.However,if there are uncertainties on the vertices or edges or both then fuzzy graphs have an extraordinary importance.In this perspective,numbers o...Theory of the Cayley graphs is directly linked with the group theory.However,if there are uncertainties on the vertices or edges or both then fuzzy graphs have an extraordinary importance.In this perspective,numbers of generalηizations of fuzzy graphs have been explored in the literature.Among the others,picture fuzzy graph(PFG)has its own importance.A picture fuzzy graph(PFG)is a pair G=(C,D)defined on a H^(*)=(A,B),where C=(ηC,θ_(C),■_(C))is a picture fuzzy set on A and D=(ηD,θ_(D),■_(D))is a picture fuzzy set over the set B∈A×A such that for any edge mn∈ B with ηD(m,n)≤min(ηC(m),ηC(n)),θD(m,n)≤min(θC(m),θC(n))and ■_(D)(m,n)≥max(■_(C)(m),■_(C)(n)).In this manuscript,we introduce the notion of the Cayley picture fuzzy graphs on groups which is the generalization of the picture fuzzy graphs.Firstly,we discuss few important characteristics of the Cayley picture fuzzy graphs.We show that Cayley picture fuzzy graphs are vertex transitive and hence regular.Then,we investigate different types of Cayley graphs induced by the Cayley picture fuzzy graphs by using different types of cuts.We extensively discuss the term connectivity of the Cayley picture fuzzy graphs.Vertex connectivity and edge connectivity of the Cayley picture fuzzy graphs are also addressed.We also investigate the linkage between these two.Throughout,we provide the extensions of some characηteristics of both the PFGs and Cayley fuzzy graphs in the setting of Cayley picture fuzzy graphs.Finally,we provide the model of interconnected networks based on the Cayley picture fuzzy graphs.展开更多
In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis...In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.展开更多
文摘Intuitionistic fuzzy starshaped sets (i.f.s.) is a generalized model of fuzzy starshaped set. By the definition of i.f.s., the intuitionistic fuzzy general starshaped sets (i.f.g.s.), intuitionistic fuzzy quasi-starshaped sets (i.f.q-s.) and intuitionistic fuzzy pseudo-starshaped sets (i.f.p-s.) are proposed and the relationships among them are studied. The equivalent discrimination conditions of i.f.q-s. and i.f.p-s. are presented on the basis of their properties which are meaningful for the research of the generalized fuzzy starshaped sets. Moreover, the invariance of the two given fuzzy sets under the translation transformation and linear reversible transformation are discussed.
基金supported by the National Natural Science Foundation of China (Grant 51509254)
文摘In small-sample problems, determining and controlling the errors of ordinary rigid convex set models are difficult. Therefore, a new uncertainty model called the fuzzy convex set(FCS) model is built and investigated in detail. An approach was developed to analyze the fuzzy properties of the structural eigenvalues with FCS constraints. Through this method, the approximate possibility distribution of the structural eigenvalue can be obtained. Furthermore, based on the symmetric F-programming theory, the conditional maximum and minimum values for the structural eigenvalue are presented, which can serve as nonfuzzy quantitative indicators for fuzzy problems. A practical application is provided to demonstrate the practicability and effectiveness of the proposed methods.
基金Supported by the National Natural Science Foundation of China (No. 69803007)
文摘This paper gives the definition of λ-cut sets and studies the structure of fuzzy rough sets. Based on the concept of rough sets, this paper proposes the representation theorem of fuzzy rough sets.
文摘The system of linear equations plays a vital role in real life problems such as optimization, economics, and engineering. The parameters of the system of linear equations are modeled by taking the experimental or observation data. So the parameters of the system actually contain uncertainty rather than the crisp one. The uncertainties may be considered in term of interval or fuzzy numbers. In this paper, a detailed study of three solution techniques namely Classical Method, Extension Principle method and α-cuts and interval Arithmetic Method to solve the system of fuzzy linear equations has been done. Appropriate applications are given to illustrate each technique. Then we discuss the comparison of the different methods numerically and graphically.
文摘Theory of the Cayley graphs is directly linked with the group theory.However,if there are uncertainties on the vertices or edges or both then fuzzy graphs have an extraordinary importance.In this perspective,numbers of generalηizations of fuzzy graphs have been explored in the literature.Among the others,picture fuzzy graph(PFG)has its own importance.A picture fuzzy graph(PFG)is a pair G=(C,D)defined on a H^(*)=(A,B),where C=(ηC,θ_(C),■_(C))is a picture fuzzy set on A and D=(ηD,θ_(D),■_(D))is a picture fuzzy set over the set B∈A×A such that for any edge mn∈ B with ηD(m,n)≤min(ηC(m),ηC(n)),θD(m,n)≤min(θC(m),θC(n))and ■_(D)(m,n)≥max(■_(C)(m),■_(C)(n)).In this manuscript,we introduce the notion of the Cayley picture fuzzy graphs on groups which is the generalization of the picture fuzzy graphs.Firstly,we discuss few important characteristics of the Cayley picture fuzzy graphs.We show that Cayley picture fuzzy graphs are vertex transitive and hence regular.Then,we investigate different types of Cayley graphs induced by the Cayley picture fuzzy graphs by using different types of cuts.We extensively discuss the term connectivity of the Cayley picture fuzzy graphs.Vertex connectivity and edge connectivity of the Cayley picture fuzzy graphs are also addressed.We also investigate the linkage between these two.Throughout,we provide the extensions of some characηteristics of both the PFGs and Cayley fuzzy graphs in the setting of Cayley picture fuzzy graphs.Finally,we provide the model of interconnected networks based on the Cayley picture fuzzy graphs.
文摘In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.