期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of parallel hole cut blasting with uncharged holes 被引量:2
1
作者 Shijie Qu Xiangbin Zheng Lihua Fan Ying Wang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期209-214,共6页
The cavity formation and propagation process of stress wave from parallel hole cut blasting was simulated with ANSYS/LS-DYNA 3D nonlinear dynamic finite element software. The distribution of element plastic strain, no... The cavity formation and propagation process of stress wave from parallel hole cut blasting was simulated with ANSYS/LS-DYNA 3D nonlinear dynamic finite element software. The distribution of element plastic strain, node velocity, node time-acceleration history and the blasting cartridge volume ratio during the process were analyzed. It was found that the detonation of charged holes would cause the interaction of stress wave with the wall of uncharged holes. Initial rock cracking and displacement to neighboring uncharged holes become the main mechanism of cavity formation in early stage.2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 parallel hole cut blasting cavity formation numerical simulation
下载PDF
Theoretical and numerical simulation investigation of deep hole dispersed charge cut blasting
2
作者 Chengxiao Li Renshu Yang +3 位作者 Yanbing Wang Yiqiang Kang Yuantong Zhang Pin Xie 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期87-107,共21页
Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production ... Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways. 展开更多
关键词 Deep hole blasting cut blasting Dispersed charge SPH-FEM Digital electronic detonator
下载PDF
Damage evolution and fragmentation behavior of pyramid cut blasting under uniaxial compression
3
作者 CHEN Si-yu YANG Li-yun +2 位作者 YANG Ai-yun HUANG Chen XIE Huan-zhen 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1475-1486,共12页
Pyramid cut blasting is an essential form of inclined hole cut blasting,but the in-situ stress effect of pyramid cut blasting is rarely studied.Based on the research background of pyramid cut blasting in a deep rock m... Pyramid cut blasting is an essential form of inclined hole cut blasting,but the in-situ stress effect of pyramid cut blasting is rarely studied.Based on the research background of pyramid cut blasting in a deep rock mass,the size,volume,and fragment size distribution of the blasting cavity before and after uniaxial compression were analysed by a model test.Otherwise,the damage and effective stress of the pyramid cut blasting were analysed with LS-DYNA numerical simulation.The results show that the damage and fragmentation of pyramid cut blasting are not only affected by blasting stress wave and blasting gas,but also affected by uniaxial compression.Under the influence of uniaxial compression,the blasting stress wave and blasting gas are more likely to damage the rock mass parallel to the uniaxial compression direction near the connecting line of blasting hole,and make the volume of cavity larger and the fragment rate lower.Additionally,uniaxial compression has a prominent influence during the middle and late stages of blasting. 展开更多
关键词 Model test Pyramid cut blasting blasting cavity sizes Uniaxial compression Fragment size
下载PDF
CONTROLLED BLASTING RESEARCH FOR SHAPEN CUTTING OF STRUCTURAL DECORATION STONE
4
作者 刘清荣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1990年第1期35-42,共8页
This paper analyses the fragmenting principle of static blasting agent (SBA) and the action of its cutting fragmentation. Using SBA for sterming material proved very useful and advantageous. Here we analyse in detail ... This paper analyses the fragmenting principle of static blasting agent (SBA) and the action of its cutting fragmentation. Using SBA for sterming material proved very useful and advantageous. Here we analyse in detail the cutting action of pre- stress and stress wave in pre-stressing force blasting. 展开更多
关键词 SBA CONTROLLED blasting RESEARCH FOR SHAPEN cutTING OF STRUCTURAL DECORATION STONE
下载PDF
Cutting parameter optimization for one-step shaft excavation technique based on parallel cutting method 被引量:6
5
作者 Qi-yue LI Kai LIU +2 位作者 Xi-bing LI Ze-wei WANG Lei WENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第7期1414-1424,共11页
The outcome of the cutting blasting in a one-step shaft excavation is heavily related to the cutting parameters used for parallel cutting method. In this study, the relationships between the cutting parameters(such a... The outcome of the cutting blasting in a one-step shaft excavation is heavily related to the cutting parameters used for parallel cutting method. In this study, the relationships between the cutting parameters(such as the hole spacing L and the empty hole diameter D) and damage zones were investigated by numerical simulation. A damage state index γ was introduced and used to characterize the crushing and crack damage zones through a user-defined subroutine. Two indices, i.e., η1 and η2 that can reflect the cutting performance, were also introduced. The simulation results indicate that an optimal value of L can be obtained so that the η1 and η2 can reach their optimal states for the best cutting performance. A larger D results in better cutting performance when the L value maintains its best. In addition, the influences of the loading rate and the in-situ stress on the cutting performance were investigated. It is found that an explosive with a high loading rate is suit for cutting blasting. The propagation direction and the length of the tensile cracks are affected by the direction and the magnitude of the maximum principal stress. 展开更多
关键词 shaft excavation prime cutting blasting numerical analysis cutting parameter optimization loading rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部