Rockfall is one of severe natural hazards that are frequently reported in northeast region of India. It carries rock block falling from the cliff with high velocities and energies which can result in damages to vehicl...Rockfall is one of severe natural hazards that are frequently reported in northeast region of India. It carries rock block falling from the cliff with high velocities and energies which can result in damages to vehicles, disruption to transportation, injuries and fatalities. The massive rockfall event which occurred in April 2017 on the highway NH-44 A, near Lengpui Airport, blocked the traffic for 1 d, and fortunately,no casualties were reported as the event occurred in the night. This is the only highway connecting the Aizawl city to the airport and the region is highly prone to rockfall events. Hence assessment of rockfall along this highway is necessary. In the current study, rockfall hazard assessment has been carried out on three locations by rockfall hazard rating system(RHRS). During pre-failure analysis, the result shows that most hazardous slopes have RHRS score of 639. The slopes were found to be vulnerable and later on the rockfall activity occurred. Three-dimensional(3 D) stability analysis has been carried out using 3 DEC software package to analyze the failure behavior and to decide the rockfall-prone zone(unstable blocks)for slope. The total displacement of 2.24 cm and velocity of 2,25 mm/s of the failed block have been observed in the numerical analysis. Further, the rockfall vulnerable zone(unstable blocks) is considered to determine the parameters such as run-out distance, bounce height and energies of the falling rock blocks. The maximum total kinetic energy of 5047 kJ has been observed in the numerical analysis with the maximum run-out distance up to 18 m.展开更多
Slope failures along hill cut road slopes are the major nuisance for commuters and highway planners as they put the human lives at huge risk,coupled with immense monetary losses.Analysis of these vulnerable cut slopes...Slope failures along hill cut road slopes are the major nuisance for commuters and highway planners as they put the human lives at huge risk,coupled with immense monetary losses.Analysis of these vulnerable cut slopes entails the assessment and estimation of the suitable material strength input parameters to be used in the numerical models to accomplish a holistic stability examination.For the present study a 60 m high,basaltic and lateritic road cut hill slope in Mahabaleshwar,India,has been considered.A number of samples of both basalt and laterite,in their natural state were tested in the laboratory and the evaluated maximum,minimum and mean strength parameters were employed for the three cases in a distinct element numerical model.The Mohr-Coulomb failure criterion has been incorporated in the numerical model for the material as well as the joints.The numerical investigation offered the factor of safety and insights into the probable deformational mechanism for the three cases.Beside,several critical parameters have also been judged from the study viz.,mode of failure,factor of safety,shear strain rate,displacement magnitudes etc.The result of this analysis shows that the studied section is prone to recurrent failures due to the capping of a substantially thick layer of weaker lateritic material above the high strength basaltic rock mass.External triggering mechanisms like heavy precipitation and earthquake may also accelerate the slope failure in this area.The study also suggests employing instant preventive measures to avert the further risk of damage.展开更多
由深路堑土石方开挖而形成的高陡光滑岩质边坡往往具有很大安全隐患和环境影响,需要采用有效的绿化防护技术以增强其稳定性和发挥生态功能。结合某高速公路扩建工程施工,从土工材料与植物生态条的结合、植物品种的选择与组合、以及土基...由深路堑土石方开挖而形成的高陡光滑岩质边坡往往具有很大安全隐患和环境影响,需要采用有效的绿化防护技术以增强其稳定性和发挥生态功能。结合某高速公路扩建工程施工,从土工材料与植物生态条的结合、植物品种的选择与组合、以及土基加固等方面,探讨了适用于陡峭且光滑岩质边坡的绿化防护关键技术,包括TBS(turf base seeding)植草(灌)防护和喷播养护策略,增加客土厚度和采用双层TBS镀锌网片加固等。实践表明,上述措施能显著提升植被的绿化成活率和边坡的稳定性。研究结果可为类似地质环境下的绿化防护工程的设计与施工提供有价值的参考。展开更多
基金the Ministry of Earth Sciences,Government of India(MoES/P.O(Geosci)/42/2015)for the grant to carry out this study
文摘Rockfall is one of severe natural hazards that are frequently reported in northeast region of India. It carries rock block falling from the cliff with high velocities and energies which can result in damages to vehicles, disruption to transportation, injuries and fatalities. The massive rockfall event which occurred in April 2017 on the highway NH-44 A, near Lengpui Airport, blocked the traffic for 1 d, and fortunately,no casualties were reported as the event occurred in the night. This is the only highway connecting the Aizawl city to the airport and the region is highly prone to rockfall events. Hence assessment of rockfall along this highway is necessary. In the current study, rockfall hazard assessment has been carried out on three locations by rockfall hazard rating system(RHRS). During pre-failure analysis, the result shows that most hazardous slopes have RHRS score of 639. The slopes were found to be vulnerable and later on the rockfall activity occurred. Three-dimensional(3 D) stability analysis has been carried out using 3 DEC software package to analyze the failure behavior and to decide the rockfall-prone zone(unstable blocks)for slope. The total displacement of 2.24 cm and velocity of 2,25 mm/s of the failed block have been observed in the numerical analysis. Further, the rockfall vulnerable zone(unstable blocks) is considered to determine the parameters such as run-out distance, bounce height and energies of the falling rock blocks. The maximum total kinetic energy of 5047 kJ has been observed in the numerical analysis with the maximum run-out distance up to 18 m.
文摘Slope failures along hill cut road slopes are the major nuisance for commuters and highway planners as they put the human lives at huge risk,coupled with immense monetary losses.Analysis of these vulnerable cut slopes entails the assessment and estimation of the suitable material strength input parameters to be used in the numerical models to accomplish a holistic stability examination.For the present study a 60 m high,basaltic and lateritic road cut hill slope in Mahabaleshwar,India,has been considered.A number of samples of both basalt and laterite,in their natural state were tested in the laboratory and the evaluated maximum,minimum and mean strength parameters were employed for the three cases in a distinct element numerical model.The Mohr-Coulomb failure criterion has been incorporated in the numerical model for the material as well as the joints.The numerical investigation offered the factor of safety and insights into the probable deformational mechanism for the three cases.Beside,several critical parameters have also been judged from the study viz.,mode of failure,factor of safety,shear strain rate,displacement magnitudes etc.The result of this analysis shows that the studied section is prone to recurrent failures due to the capping of a substantially thick layer of weaker lateritic material above the high strength basaltic rock mass.External triggering mechanisms like heavy precipitation and earthquake may also accelerate the slope failure in this area.The study also suggests employing instant preventive measures to avert the further risk of damage.
文摘由深路堑土石方开挖而形成的高陡光滑岩质边坡往往具有很大安全隐患和环境影响,需要采用有效的绿化防护技术以增强其稳定性和发挥生态功能。结合某高速公路扩建工程施工,从土工材料与植物生态条的结合、植物品种的选择与组合、以及土基加固等方面,探讨了适用于陡峭且光滑岩质边坡的绿化防护关键技术,包括TBS(turf base seeding)植草(灌)防护和喷播养护策略,增加客土厚度和采用双层TBS镀锌网片加固等。实践表明,上述措施能显著提升植被的绿化成活率和边坡的稳定性。研究结果可为类似地质环境下的绿化防护工程的设计与施工提供有价值的参考。