This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fa...This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.展开更多
Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety perfo...Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored.This work analyzes the thermal runaway evolution of high-capacity LiFePO_(4) batteries under different internal heat transfer modes,which are controlled by different penetration modes.Two penetration cases involving complete penetration and incomplete penetration were detected during the test,and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism.A theoretical model of microcircuits and internal heat conduction is also established.The results indicated three thermal runaway evolution processes for high-capacity batteries,which corresponded to the experimental results of thermal equilibrium,single thermal runaway,and two thermal runaway events.The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole.By controlling the heat dissipation conditions,the time interval between two thermal runaway events can be delayed from 558 to 1417 s,accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.展开更多
This paper presents the results of the simulations and their respective analyses corresponding to the power frequency overvoltages resulting from various fault types occurring inside a microgrid. During the islanded m...This paper presents the results of the simulations and their respective analyses corresponding to the power frequency overvoltages resulting from various fault types occurring inside a microgrid. During the islanded mode of operation, the analysed microgrid can be simultaneously fed by a diesel generator, a 1 MW wind power turbine, a small solar system and a 1 MW hydroelectric scheme. The operating voltage of the microgrid is 2.4 kV. During a fault in the system, the overvoltages normally occur in two remarkable instants. The first one occurs at the beginning of the fault itself. The second one occurs at the instant when the fault is cleared. The major concern here is the overvoltage during the fault period. Due to the travelling wave effect along cables and overhead lines composing the microgrid system, these overvoltages can be amplified, thus jeopardizing the insulation level of the microgrid transmission system and related equipment. Much of the work available now is dedicated to overvoltages present in high-voltage systems leaving a gap for the study and behaviour on low voltage microgrid systems. The overvoltage stress is characterized by the maximum low-frequency, short-duration (crest value) of the overvoltage. Both cables and overhead lines that constitute the microgrid transmission system are characterized by their R-L-C parameters. The simulations of the microgrid system are conducted using the ATP program. According to the international ANSI and IEEE standards, the minimum BIL (Basic Impulse Insulation Level) and BSL (Basic Impulse Switching Level) for the 2.4 kV voltage level are 20 kV and 10 kV, respectively;thus, care should be taken so that the healthy phases upon which commonly appear such overvoltages are not exceeded in their insulation level.展开更多
基金supported in part by the National Natural Science Foundation of China(52177042)Natural Science Foundation of Hebei Province(E2020502031)+1 种基金the Fundamental Research Funds for the Central Universities(2017MS151),Suzhou Social Developing Innovation Project of Science and Technology(SS202134)the Top Youth Talent Support Program of Hebei Province([2018]-27).
文摘This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.
基金supported by the National Key R&D Program of China(2021YFB2402001)the China National Postdoctoral Program for Innovative Talents(BX20220286)+1 种基金the China Postdoctoral Science Foundation(2022T150615)supported by the Youth Innovation Promotion Association CAS(Y201768)。
文摘Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored.This work analyzes the thermal runaway evolution of high-capacity LiFePO_(4) batteries under different internal heat transfer modes,which are controlled by different penetration modes.Two penetration cases involving complete penetration and incomplete penetration were detected during the test,and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism.A theoretical model of microcircuits and internal heat conduction is also established.The results indicated three thermal runaway evolution processes for high-capacity batteries,which corresponded to the experimental results of thermal equilibrium,single thermal runaway,and two thermal runaway events.The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole.By controlling the heat dissipation conditions,the time interval between two thermal runaway events can be delayed from 558 to 1417 s,accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.
文摘This paper presents the results of the simulations and their respective analyses corresponding to the power frequency overvoltages resulting from various fault types occurring inside a microgrid. During the islanded mode of operation, the analysed microgrid can be simultaneously fed by a diesel generator, a 1 MW wind power turbine, a small solar system and a 1 MW hydroelectric scheme. The operating voltage of the microgrid is 2.4 kV. During a fault in the system, the overvoltages normally occur in two remarkable instants. The first one occurs at the beginning of the fault itself. The second one occurs at the instant when the fault is cleared. The major concern here is the overvoltage during the fault period. Due to the travelling wave effect along cables and overhead lines composing the microgrid system, these overvoltages can be amplified, thus jeopardizing the insulation level of the microgrid transmission system and related equipment. Much of the work available now is dedicated to overvoltages present in high-voltage systems leaving a gap for the study and behaviour on low voltage microgrid systems. The overvoltage stress is characterized by the maximum low-frequency, short-duration (crest value) of the overvoltage. Both cables and overhead lines that constitute the microgrid transmission system are characterized by their R-L-C parameters. The simulations of the microgrid system are conducted using the ATP program. According to the international ANSI and IEEE standards, the minimum BIL (Basic Impulse Insulation Level) and BSL (Basic Impulse Switching Level) for the 2.4 kV voltage level are 20 kV and 10 kV, respectively;thus, care should be taken so that the healthy phases upon which commonly appear such overvoltages are not exceeded in their insulation level.