Through systematic cutting experiments, characteristics of the cutting performance of Ti(C, N) based cermets is identified. The experiments were designed to study their resistance,toughness, cutting force, tool-chip f...Through systematic cutting experiments, characteristics of the cutting performance of Ti(C, N) based cermets is identified. The experiments were designed to study their resistance,toughness, cutting force, tool-chip friction coefficient and machining quality by comparing them with those of WC based cemented carbides. The cutting data and the regressed empirical formulae would be useful to promote proper application of cermet cutting tool materials.展开更多
The accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel borin...The accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel boring machine(TBM) cutterhead for cutting ability and slagging ability. This paper propose cutting efficiency, stability, and continuity of slagging as the evaluation indexes of comprehensive cutterhead performance. On the basis of research of true TBM engineering applications, this paper proposes a calculation method for each index. A slagging efficiency index with a ratio of the maximum di erence between the slagging amount and average slagging is established. And a slagging stability index with a ratio of the maximum slagging fluctuation and average slagging is presented. Meanwhile, a cutting efficiency index by the weighed average value of multistage rock fragmentation of a cutter’s specific energy is established. The Robbins and China Railway Construction Corporation(CRCC) cutterheads are evaluated. The results show that under the same thrust and torque, the slagging stability of the CRCC scheme is worse, but the slagging continuity of the CRCC scheme is better. The cutting ability index shows that the CRCC cutterhead is more efficient.展开更多
文摘Through systematic cutting experiments, characteristics of the cutting performance of Ti(C, N) based cermets is identified. The experiments were designed to study their resistance,toughness, cutting force, tool-chip friction coefficient and machining quality by comparing them with those of WC based cemented carbides. The cutting data and the regressed empirical formulae would be useful to promote proper application of cermet cutting tool materials.
基金Supported by National basic research program of China(973 Project,Grant No.2013CB035400)National Natural Science Foundation of China(Grant No.51375001)+1 种基金Major Projects of Liaoning Science and Technology Plan(Grant No.2015106016)Basic Research Project of Central University(Grant No.DUT16QY11)
文摘The accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel boring machine(TBM) cutterhead for cutting ability and slagging ability. This paper propose cutting efficiency, stability, and continuity of slagging as the evaluation indexes of comprehensive cutterhead performance. On the basis of research of true TBM engineering applications, this paper proposes a calculation method for each index. A slagging efficiency index with a ratio of the maximum di erence between the slagging amount and average slagging is established. And a slagging stability index with a ratio of the maximum slagging fluctuation and average slagging is presented. Meanwhile, a cutting efficiency index by the weighed average value of multistage rock fragmentation of a cutter’s specific energy is established. The Robbins and China Railway Construction Corporation(CRCC) cutterheads are evaluated. The results show that under the same thrust and torque, the slagging stability of the CRCC scheme is worse, but the slagging continuity of the CRCC scheme is better. The cutting ability index shows that the CRCC cutterhead is more efficient.