期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Performances of a Stinger PDC cutter breaking granite: Cutting force and mechanical specific energy in single cutter tests 被引量:1
1
作者 Chao Xiong Zhong-Wei Huang +4 位作者 Huai-Zhong Shi Rui-Yue Yang Gang Wu Han Chen Wen-Hao He 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1087-1103,共17页
The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive ... The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter. 展开更多
关键词 Stinger PDC cutter cutting force Mechanical specific energy Single cutter tests
下载PDF
Cutting Force Fluctuation Suppression and Error Homogenization of Noncircular Gear Hobbing Based on the Tool Shifting Method
2
作者 Dazhu Li Jiang Han +1 位作者 Xiaoqing Tian Lian Xia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期167-179,共13页
The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing proc... The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing process.In this paper,a hobbing machining model with tool-shifting characteristics was proposed to solve the problems of cutting force fluctuation and inconsistency of tooth profile envelope accuracy at different positions of the pitch curve in noncircular gear hobbing.Based on the unit cutting force coefficient method,the undeformed chip volume generated by interrupted cutting was used to characterize the fluctuation trend of the hobbing force.The fluctuation characteristics of the cutting force generated by different hobbing models were compared and analyzed.Using the equivalent gear tooth and hob slotting numbers,an analysis model of the tooth profile envelope error of the noncircular gear was constructed.Subsequently,the tooth profile envelope errors at different positions of the pitch curve were compared and analyzed based on the constructed model.The transmission structure of the electronic gearbox was constructed based on the proposed hobbing model,and the hobbing experiment was conducted based on the selfdeveloped noncircular gear CNC hobbing system.This paper proposes a hobbing method that can effectively suppress the fluctuation of the peak and whole circumference cutting force and reduce the maximum envelope error of the whole circumference gear teeth. 展开更多
关键词 Noncircular gear Gear hobbing cutting force Envelope error Machining model
下载PDF
Experimental investigation on the cuttings formation process and its relationship with cutting force in single PDC cutter tests
3
作者 Xian-Wei Dai Zhong-Wei Huang +3 位作者 Tao Huang Peng-Ju Chen Huai-Zhong Shi Shuang Yan 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1779-1787,共9页
The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure proce... The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure process.However,they were treated as two separate parameters in previous publications.In this study,through a series of rock block cutting tests,the relationship between them was investigated to obtain an in-depth understanding of the formation of cuttings.In addition,to validate the standpoints obtained in the aforementioned experiments,rock sheet cutting tests were conducted and the rock failure process was monitored by a high-speed camera frame by frame.The cutting force was recorded with the same sampling rate as the camera.By this design,every sampled point of cutting force can match a picture captured by the camera,which reflects the interaction between the rock and the cutter.The results indicate that the increase in cutting depth results in a transition of rock failure modes.At shallow cutting depth,ductile failure dominates and all the cuttings are produced by the compression of the cutter.The corresponding cutting force fluctuates slightly.However,beyond the critical depth,brittle failure occurs and chunk-like cuttings appear,which leads to a sharp decrease in cutting force.After that,the generation of new surface results in a significant decrease in actual cutting depth,a parameter proposed to reflect the interaction between the rock and the cutter.Consequently,ductile failure dominates again and a slight fluctuation of cutting force can be detected.As the cutter moves to the rock,the actual cutting depth gradually increases,which results in the subsequent generation of chunk-like cuttings.It is accompanied by an obvious cutting force drop.That is,ductile failure and brittle failure,one following another,present at large cutting depth.The transition of rock failure mode can be correlated with the variation of cutting force.Based on the results of this paper,the real-time monitoring of torque may be helpful to determine the efficiency of PDc bits in the downhole. 展开更多
关键词 Rock breaking cutting force PDC cutter cuttingS
下载PDF
Research on the Characters of the Cutting Force in Vibration Cutting Particle Reinforced Metal Matrix Composites SiC_p/Al 被引量:3
4
作者 LIU Chuan-shao 1, ZHAO Bo 1,2, GAO Guo-fu 1, JIAO F eng 1 (1. Department of Mechanical Engineering, Jiaozuo Institute of Techno logy, Henan 454000, China 2. Institute of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期74-75,共2页
In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com... In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces. 展开更多
关键词 composite SiC p/Al PCD tool ultrasonic vibrati on turning cutting force
下载PDF
Study on Cutting Force,Cutting Temperature and Machining Residual Stress in Precision Turning of Pure Iron with Different Grain Sizes 被引量:2
5
作者 Yinfei Yang Lu Jin +2 位作者 Jinpeng Zhu Jinxing Kong Liang Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期159-167,共9页
Pure iron is one of the difficult-to-machine materials due to its large chip deformation,adhesion,work-hardening,and built-up edges formation during machining.This leads to a large workpiece deformation and challenge ... Pure iron is one of the difficult-to-machine materials due to its large chip deformation,adhesion,work-hardening,and built-up edges formation during machining.This leads to a large workpiece deformation and challenge to meet the required technical indicators.Therefore,under varying the grain size of pure iron,the influence of cutting speed,feed,and depth of cut on the cutting force,heat generation,and machining residual stresses were explored in the turning process to improve the machinability without compromising the mechanical properties of the material.The experimental findings have depicted that the influence of grain size on cutting force in the precision turning process is not apparent.However,the cutting temperature and residual stress of machining fine-grain iron were much smaller than the coarse grain at all levels of cutting parameters. 展开更多
关键词 Pure iron Grain size cutting parameter cutting force cutting temperature Residual stress
下载PDF
A Model for Predicting Dynamic Cutting Forces in Sand Mould Milling with Orthogonal Cutting 被引量:2
6
作者 Zhong-De Shan Fu-Xian Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期95-105,共11页
Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete depositio... Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete deposition material. There is still a lack of theoretical research on the cutting force. In order to realize the prediction and control of the cut?ting force in the sand mould milling process, an analytical model of cutting force is proposed based on the unequal division shear zone model of orthogonal cutting. The deformation velocity relations of the chip within the orthogonal cutting shear zone are analyzed first. According to the flow behavior of granular, the unequal division shear zone model of sand mould is presented, in which the governing equations of shear strain rate, strain and velocity are estab?lished. The constitutive relationship of quasi?solid–liquid transition is introduced to build the 2D constitutive equation and deduce the cutting stress in the mould shear zone. According to the cutting geometric relations of up milling with straight cutting edge and the transformation relationship between cutting stress and cutting force, the dynamic cutting forces are predicted for di erent milling conditions. Compared with the experimental results, the predicted results show good agreement, indicating that the predictive model of cutting force in milling sand mould is validated. Therefore, the proposed model can provide the theoretical guidance for cutting force control in high e ciency mill?ing sand mould. 展开更多
关键词 Green manufacture cutting force Sand mould milling Orthogonal cutting Quasi-solid-liquid transition
下载PDF
A flexible multi-body model of a surface miner for analyzing the interaction between rock-cutting forces and chassis vibrations 被引量:1
7
作者 Alessandro Medolago Stefano Melzi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期365-375,共11页
The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chass... The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chassis resulting in fatigue failures.These events can seriously undermine the safety of operators and digging operations may be stopped for days,with an obvious economic impact.This work presents an analysis of the dynamics of a surface miner,focusing on the interaction between cutting machine dynamics and cutting forces,which is a new approach for this type of machine.For this purpose,the authors developed a numerical model of the cutting process made up of(1)a multi-body model of the cutting machine,which takes into account the chassis's flexibility;(2)a model of the rotating cutting head;and(3)a model of the interaction between the cutting head and rock,based on Shao's model.The model was compared with experimental results and then used to investigate the effects of cutting speed and cutting depth on the machine dynamics. 展开更多
关键词 Surface miner Flexible multi-body model VALIDATION cutting forces Chassis vibrations
下载PDF
Predictive Modeling and Parameter Optimization of Cutting Forces During Orbital Drilling 被引量:1
8
作者 单以才 李亮 +2 位作者 何宁 秦晓杰 章婷 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期521-529,共9页
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d... To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production. 展开更多
关键词 orbital drilling cutting force hybrid level orthogonal experiment method prediction model parameter optimization
下载PDF
Prediction of cutting force in ultra-precision machining of nonferrous metals based on strain energy
9
作者 Ying Wang Zewei Yuan +1 位作者 Tianzheng Wu Heran Yan 《Nanotechnology and Precision Engineering》 CAS CSCD 2021年第4期1-11,共11页
The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account... The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account of factors such as size effects,the undeformed cutting thickness,the tool blunt radius,and the tool rake angle.Therefore,this paper proposes a new theoretical calculation model for accurately predicting the cutting force in ultra-precision machining,taking account of such factors.The model is first used to analyze the material deformation of the workpiece and the cutting force distribution along the cutting edge of a diamond tool.The size of the strain zone in different cutting deformation zones is then determined by using the distribution of strain work per unit volume and considering the characteristics of the stress distribution in these different deformation zones.Finally,the cutting force during ultra-precision machining is predicted precisely by calculating the material strain energy in different zones.A finite element analysis and experimental data on ultra-precision cutting of copper and aluminum are used to verify the predictions of the theoretical model.The results show that the error in the cutting force between the calculation results and predictions of the model is less than 14%.The effects of the rake face stress distribution of the diamond tool,the close contact zone,and material elastic recovery can be fully taken into account by the theoretical model.Thus,the proposed theoretical calculation method can effectively predict the cutting force in ultra-precision machining. 展开更多
关键词 Ultra-precision cutting Diamond tool cutting force Strain energy Finite element analysis
下载PDF
Influence of Cutting and Geometrical Parameters on the Cutting Force in Milling
10
作者 Hedi Yangui Bacem Zghal +4 位作者 Amir Kessentini Gael Chevallier Alain Riviere Mohamed Haddar Chafik Karra 《Engineering(科研)》 2010年第10期751-761,共11页
This paper presents a numerical modelling of the dynamic behaviour of the Machine-Tool-Part system (MOP) in milling. The numerical study of such complex structure requires the use of sophisticated method like finite e... This paper presents a numerical modelling of the dynamic behaviour of the Machine-Tool-Part system (MOP) in milling. The numerical study of such complex structure requires the use of sophisticated method like finite elements one. Simulation is employed to predict cutting forces and dynamic response of Machine-Tool-Part system (MOP) during end-milling operation. Finally, spectral analysis is presented to see the influence of feed direction in the vibration. 展开更多
关键词 MILLING MODELLING cutting force Finite Element
下载PDF
Cutting force model and damage formation mechanism in milling of 70wt%Si/Al composite 被引量:1
11
作者 Guolong ZHAO Lianjia XIN +3 位作者 Liang LI Yang ZHANG Ning HE Hans Nørgaard HANSEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期114-128,共15页
High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many appl... High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milling-induced damages of 70wt% Si/Al composites. A cutting force analytical model considering the characteristics of both the primary silicon particles and the cutting-edge radius was established. Milling experiments were conducted to verify the validity of the model. The results show that the analytical model exhibits a good consistency with the experimental results, and the error is about 10%. The cutting-edge radius has significant effects on the cutting force, surface roughness and damage formation. With the increase in the cutting-edge radius, both the cutting force and the surface roughness decrease firstly and then increase. When the cutting-edge radius is 27 μm, the surface roughness(Sa) reaches the minimum of 2.3 μm.Milling-induced surface damages mainly contain cracks, pits, scratches, matrix coating and burrs.The damage formation is dominated by the failure mode of primary silicon particles, which includes compressive breakage, intragranular fracture, particle pull-out, and interface debonding. In addition, the high ductility of aluminium matrix leads to matrix coating. This work provides guidance for tool selection and damage inhibition in high-efficiency and high-precision machining of high mass fraction Si/Al composites. 展开更多
关键词 posite cutting force analytical model cutting-edge radius Surface quality Damage formation mechanism
原文传递
Feedrate scheduling method for constant peak cutting force in five-axis flank milling process 被引量:5
12
作者 Liping WANG Xing YUAN +1 位作者 Hao SI Feiyu DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第7期2055-2069,共15页
It is extremely important to select appropriate feedrates for the stable machining of parts with ruled surface in modern aviation industrial applications.However,the current studies take too much time to achieve this ... It is extremely important to select appropriate feedrates for the stable machining of parts with ruled surface in modern aviation industrial applications.However,the current studies take too much time to achieve this goal.Therefore,this paper presents an efficient feedrate optimization method for constant peak cutting force in five-axis flank milling process.The solution method of the instantaneous undeformed chip thickness(IUCT)is proposed using least squares theory with the cutter entry angle and feedrate as variables.Based on this method,an explicit analytical expression of the peak cutting force for each cutting point is established.Furthermore,a feedrate scheduling method is developed to quickly solve the appropriate feedrate under constant peak cutting force.To verify the proposed IUCT model,the fitting IUCT is compared with the accuracy data at different feedrates.Additionally,some experiments of five-axis flank milling are conducted to demonstrate the effectiveness of the peak force model and the feedrate scheduling method.And the surface roughness before and after feedrate scheduling is detected.The results show that the proposed feedrate scheduling method can quickly adjust the feedrate and ensure constant peak force during machining.At the same time,the surface quality is kept at a high level. 展开更多
关键词 Cutter runout Feedrate scheduling force control Instantaneous undeformed chip thickness Peak cutting force
原文传递
Smooth particle hydrodynamics modeling of cutting force in milling process of TC4 被引量:4
13
作者 Xiao-Guang Guo Ming Li +3 位作者 Zhi-Gang Dong Rui-Feng Zhai Zhu-Ji Jin Ren-Ke Kang 《Advances in Manufacturing》 SCIE CAS CSCD 2019年第4期364-373,共10页
Milling is one of the main methods for processing titanium alloy.At present,the complex process of milling is usually simulated by finite element method,which often has problems in mesh distortion and mesh reconstruct... Milling is one of the main methods for processing titanium alloy.At present,the complex process of milling is usually simulated by finite element method,which often has problems in mesh distortion and mesh reconstruction.Therefore,a meshless three-dimensional milling simulation model was established for TC4 titanium alloy using the smooth particle hydrodynamics(SPH)method.Firstly,the established SPH model was analyzed by the LS-DYNA software,and the stress distribution,temperature field,and cutting force during milling were studied under specific conditions.Subsequently,the cutting force was simulated under different cutting parameters and the effects of these parameters on the cutting force were determined.Finally,based on a series of cutting force experiments,the accuracy of the simulation model was verified.This study proves the feasibility of SPH method in the simulation of titanium alloy milling process and provides novel methods for investigating the processing mechanism and optimizing the processing technology of titanium alloys. 展开更多
关键词 TC4 titanium Smooth particle hydrodynamics(SPH)-Milling cutting temperature cutting force
原文传递
Effect of grain refinement on cutting force of difficult-to-cut metals in ultra-precision machining 被引量:1
14
作者 Renjie JI Qian ZHENG +7 位作者 Yonghong LIU Hui JIN Fan ZHANG Shenggui LIU Baokun WANG Shuaichen LU Baoping CAI Xiaopeng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期484-493,共10页
The nickel-based superalloy Inconel 718 is treated with Coupled Ultrasonic and Electric Pulse Treatment(CUEPT),and the surface grain is refined from the average size of 9550.0 nm to287.9,216.3,150.5,126.3,25.8 nm by d... The nickel-based superalloy Inconel 718 is treated with Coupled Ultrasonic and Electric Pulse Treatment(CUEPT),and the surface grain is refined from the average size of 9550.0 nm to287.9,216.3,150.5,126.3,25.8 nm by different effective treatment currents,respectively.The ultraprecision turning experiments are carried out on the processed workpiece after CUEPT.The experimental results show that the average cutting force increases with the decrease of surface grain size.Moreover,a mathematical model that can describe the relationship between grain size and cutting force is established,and the calculated results match the experimental results well.The calculated results also indicate that the variation of cutting force caused by the same variation of grain size decreases as the degree of grain refinement increases.Finally,the influence mechanism of grain refinement on cutting force is analyzed.The improvement of stability of grain boundaries and the increase of number of grain boundaries cause the increase of cutting force after grain refinement. 展开更多
关键词 Grain size cutting force Difficult-to-cut metals Grain refinement Ultra-precision machining Cou-pled ultrasonic and electric pulse treatment
原文传递
Indirect approach for predicting cutting force coefficients and power consumption in milling process 被引量:1
15
作者 Kai-Ning Shi Ning Liu +3 位作者 Cong-Le Liu Jun-Xue Ren Shan-Shan Yang Wei Chit Tan 《Advances in Manufacturing》 SCIE EI CAS CSCD 2022年第1期101-113,共13页
Accurate energy consumption modeling is an essential prerequisite for sustainable manufacturing.Recently,cutting-power-based models have garnered significant attention,as they can provide more comprehensive informatio... Accurate energy consumption modeling is an essential prerequisite for sustainable manufacturing.Recently,cutting-power-based models have garnered significant attention,as they can provide more comprehensive information regarding the machining energy consumption pattern.However,their implementation is challenging because new cutting force coefficients are typically required to address new workpiece materials.Traditionally,cutting force coefficients are calculated at a high operation cost as a dynamometer must be used.Hence,a novel indirect approach for estimating the cutting force coefficients of a new tool-workpiece pair is proposed herein.The key idea is to convert the cutting force coefficient calculation problem into an optimization problem,whose solution can be effectively obtained using the proposed simulated annealing algorithm.Subsequently,the cutting force coefficients for a new tool-workpiece pair can be estimated from a pre-calibrated energy consumption model.Machining experiments performed using different machine tools clearly demonstrate the effectiveness of the developed approach.Comparative studies with measured cutting force coefficients reveal the decent accuracy of the approach in terms of both energy consumption prediction and instantaneous cutting force prediction.The proposed approach can provide an accurate and reliable estimation of cutting force coefficients for new workpiece materials while avoiding operational or economic problems encountered in traditional force monitoring methods involving dynamometers.Therefore,this study may significantly advance the development of sustainable manufacturing. 展开更多
关键词 Sustainable manufacturing cutting force coefficients Energy consumption Machining processSimulated annealing
原文传递
Analytical model of cutting force in axial ultrasonic vibration-assisted milling in-situ TiB_(2)/7050Al PRMMCs
16
作者 Xiaofen LIU Wenhu WANG +4 位作者 Ruisong JIANG Yifeng XIONG Kunyang LIN Junchen LI Chenwei SHAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期160-173,共14页
Ultrasonic vibration-assisted milling has been widely applied in machining the difficultto-cut materials owing to the remarkable improvements in reducing the cutting force.However,analytical models to reveal the mecha... Ultrasonic vibration-assisted milling has been widely applied in machining the difficultto-cut materials owing to the remarkable improvements in reducing the cutting force.However,analytical models to reveal the mechanism and predict the cutting force of ultrasonic vibrationassisted milling metal matrix composites are still needed to be developed.In this paper,an analytical model of cutting force was established for ultrasonic vibration-assisted milling in-situ TiB_(2)/7050 Al metal matrix composites.During modeling,change of motion of the cutting tool,contact of toolchip-workpiece and acceleration of the chip caused by ultrasonic vibration was considered based on equivalent oblique cutting model.Meanwhile,material properties,tool geometry,cutting parameters and vibration parameters were taken into consideration.Furthermore,the developed analytical force model was validated with and without ultrasonic vibration milling experiments on in-situ TiB_(2)/7050 Al metal matrix composites.The predicted cutting forces show to be consistent well with the measured cutting forces.Besides,the relative error of instantaneous maximum forces between the predicted and measured data is from 0.4%to 15.1%.The analytical model is significant for cutting force prediction not only in ultrasonic-vibration assisted milling but also in conventional milling in-situ TiB_(2)/7050 Al metal matrix composites,which was proved with general applicability. 展开更多
关键词 Al-MMCs Analytical model cutting force IN-SITU MILLING TiB_(2)particles Ultrasonic vibration
原文传递
Study on mathematical model of cutting force in micromachining
17
作者 Zhen Yu Quan-Jie Gao Ding-Fang Chen 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2015年第4期92-111,共20页
With the development of micromachining technology,it is very important to study the mechanism of micromachining,determine the micromachining parameters and ensure the products’quality during the micromachining proces... With the development of micromachining technology,it is very important to study the mechanism of micromachining,determine the micromachining parameters and ensure the products’quality during the micromachining process.Combined with the micromechanism between tool and workpiece during micromachining process,the sources of the micro-cutting force were analyzed,the micro-cutting physical model was constructed,and the microstress model interacted between the cutting arc edge of the tool and the material of the workpiece was analyzed.Combined with the surface friction and elastic extrusion mechanism between the cutting tool and workpiece,the micro-cutting force model was constructed from two aspects.The micro-cutting depth is deeper than the minimum cutting depth and the micro-cutting depth is shallower than the minimum cutting depth,then the minimum cutting depth value was calculated.Combined with the dislocation properties and microcrystal structure of workpiece’s material,the internal stress of the micromachining force model based on the gradient plasticity theory was calculated,and the force model of the micro-cutting process was studied too.It is significant to control the precision of micromachining process during the micromachining process by constructing the micromachining process force model through studying the small deformation of the material and the mechanism of micromachining. 展开更多
关键词 MICRO-cutting plastic strain gradient theory DISLOCATION cutting force mathematical model simulation.
原文传递
Effects of maturity of citrus fruits on their stalks cutting force
18
作者 Yi Wang Dun Liu +3 位作者 Yali Li Hongmei Zhao Changhui Yang Yitan Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第6期23-30,共8页
When the citrus harvesting robot harvests citruses,the mechanical properties of citrus stalks have an important influence on the success rate of the citrus harvesting robot.During the harvesting,the maturity of citrus... When the citrus harvesting robot harvests citruses,the mechanical properties of citrus stalks have an important influence on the success rate of the citrus harvesting robot.During the harvesting,the maturity of citrus fruits not only determined the harvesting time of citrus fruits but also affected the mechanical properties of citrus fruit stalks.In this study,the changes in the cutting force of citrus fruit stalks were described during the maturity of citrus fruits,and the effect of the maturity on the cutting force of stalks was clarified,so as to determine the harvesting time with the minimum cutting force required for harvesting citrus fruits by the harvesting robot.During the maturity,the relevant parameters of fruit maturity,such as the hardness,pH,and solid solution content of citrus fruits,were monitored.The results showed that there is a significant correlation between the hardness,pH,the solid solution content of citrus fruits,and the cutting force of citrus fruit stalks during maturity.The single-factor mechanical model of hardness,pH,solid solution content of citrus fruits,and the cutting force of citrus fruit stalks were established based on the data of 2019,which were verified through tests in 2020.The test results are as follows:during the ripening period of citrus fruits,the fruit hardness varies in the range of 0.13-0.31 MPa,the hardness changes by 0.02 MPa,and the cutting force changes by about 2.0-6.0 N;the pH of the citrus fruits changes in the range of 2.8-4.0,and the cutting force changes by about 1.5-2.2 N for every 0.1 change in the pH;the variation range of fruit solid solution content is 6.5%-9.0%,and for every 0.2%change in solid solution,the cutting force of citrus fruit stalks changes by about 1.25-2.0 N.The mechanical models can predict the cutting force required to cut off citrus fruit stalks according to the relevant parameters of citrus fruit maturity and can provide a reference for effectively evaluating the required cutting force. 展开更多
关键词 citrus fruit harvesting cutting force of citrus fruit stalks citrus fruit maturity mechanical regression model
原文传递
Cutting forces analysis of micro-milling process on Inconel 718-a finite element approach
19
作者 Padmaja Tripathy Kalipada Maity 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第2期39-48,共10页
This paper presents a modeling and simulation of micro-milling process with finite element modeling(FEM)analysis to predict cutting forces.The micro-milling of Inconel 718 is conducted using high-speed steel(HSS)micro... This paper presents a modeling and simulation of micro-milling process with finite element modeling(FEM)analysis to predict cutting forces.The micro-milling of Inconel 718 is conducted using high-speed steel(HSS)micro-end mill cutter of 1mm diameter.The machining parameters considered for simulation are feed rate,cutting speed and depth of cut which are varied at three levels.The FEM analysis of machining process is divided into three parts,i.e.,pre-processer,simulation and post-processor.In preprocessor,the input data are provided for simulation.The machining process is further simulated with the pre-processor data.For data extraction and viewing the simulated results,post-processor is used.A set of experiments are conducted for validation of simulated process.The simulated and experimental results are compared and the results are found to be having a good agreement. 展开更多
关键词 MICRO-MILLING finite element modeling SIMULATION cutting force Inconel 718
原文传递
Experimental Investigation of Material Removal in Elliptical Vibration Cutting of Cortical Bone
20
作者 Wei Bai Yuhao Zhai +5 位作者 Jiaqi Zhao Guangchao Han Linzheng Ye Xijing Zhu Liming Shu Dong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期106-115,共10页
To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introdu... To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy. 展开更多
关键词 Elliptical vibration cutting Cortical bone Material removal Chip formation Chip morphology Fracture propagation cutting force OSTEOTOMY
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部