The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation sp...The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries.展开更多
A new mechanistic cutting force model for flat end milling using the instantaneous cutting force coefficients is proposed. An in-depth analysis shows that the total cutting forces can be separated into two terms: a no...A new mechanistic cutting force model for flat end milling using the instantaneous cutting force coefficients is proposed. An in-depth analysis shows that the total cutting forces can be separated into two terms: a nominal component independent of the runout and a perturbation component induced by the runout. The instantaneous value of the nominal component is used to calibrate the cutting force coefficients. With the help of the perturbation component and the cutting force coefficients obtained above, the cutter runout is identified. Based on simulation and experimental results, the validity of the identification approach is demonstrated. The advantage of the proposed method lies in that the calibration performed with data of one cutting test under a specific regime can be applied for a great range of cutting conditions.展开更多
Cutting force measurement has become a crucial activity for enhancing machining process performance. This paper described the design and fabrication of embedded Ni-chrome thin-film micro-sensors in tool holders to mea...Cutting force measurement has become a crucial activity for enhancing machining process performance. This paper described the design and fabrication of embedded Ni-chrome thin-film micro-sensors in tool holders to measure the cutting force in machining operations. A Ni-chrome thin-film sensor device is embedded within a substrate structure through a dy- namic brazing process, which consists of a Ti6A14V substrate, a nickel-chromium thin-film sensor and an alumina insulating layer. The Wheatstone bridge which consists of four sensors would produce the output voltage when the thin film caused de- formation by the cutting forces. The relationship between input and output voltages was theoretically analyzed. According- ly, an in-process cutting force measurement system is established. The results show that the thin-film sensor had good lineari- ty and less mutual interference, and it is suitable for all kinds of turning forces under the measurement conditions.展开更多
Cutting tests were done using a test bed designed to measure pick cutting forces when cutting coal and rock.The test equipment has a drum with two starting helical vanes.Cutting forces on a pick were measured as a fun...Cutting tests were done using a test bed designed to measure pick cutting forces when cutting coal and rock.The test equipment has a drum with two starting helical vanes.Cutting forces on a pick were measured as a function of coal compressive strength,pick carbide tip diameter and the cutting depth per drum revolution.The results show that the cutting force is linearly related to the compressive strength.The relationship between the cutting force and both the carbide tip diameter and the cutting depth are exponential.Fluctuation in the cutting force does not increase with coal compressive strength but it has a linear relationship to tip diameter.A plot of cutting force fluctuations versus the cutting depth follows a sigmoidal curve.Based on the analysis of these test results a theoretical basis is supplied for design and effective use of shearer drums.展开更多
Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact c...Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications.展开更多
In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inhere...In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intru- siveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimen- sional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.展开更多
In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com...In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.展开更多
Pure iron is one of the difficult-to-machine materials due to its large chip deformation,adhesion,work-hardening,and built-up edges formation during machining.This leads to a large workpiece deformation and challenge ...Pure iron is one of the difficult-to-machine materials due to its large chip deformation,adhesion,work-hardening,and built-up edges formation during machining.This leads to a large workpiece deformation and challenge to meet the required technical indicators.Therefore,under varying the grain size of pure iron,the influence of cutting speed,feed,and depth of cut on the cutting force,heat generation,and machining residual stresses were explored in the turning process to improve the machinability without compromising the mechanical properties of the material.The experimental findings have depicted that the influence of grain size on cutting force in the precision turning process is not apparent.However,the cutting temperature and residual stress of machining fine-grain iron were much smaller than the coarse grain at all levels of cutting parameters.展开更多
Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete depositio...Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete deposition material. There is still a lack of theoretical research on the cutting force. In order to realize the prediction and control of the cut?ting force in the sand mould milling process, an analytical model of cutting force is proposed based on the unequal division shear zone model of orthogonal cutting. The deformation velocity relations of the chip within the orthogonal cutting shear zone are analyzed first. According to the flow behavior of granular, the unequal division shear zone model of sand mould is presented, in which the governing equations of shear strain rate, strain and velocity are estab?lished. The constitutive relationship of quasi?solid–liquid transition is introduced to build the 2D constitutive equation and deduce the cutting stress in the mould shear zone. According to the cutting geometric relations of up milling with straight cutting edge and the transformation relationship between cutting stress and cutting force, the dynamic cutting forces are predicted for di erent milling conditions. Compared with the experimental results, the predicted results show good agreement, indicating that the predictive model of cutting force in milling sand mould is validated. Therefore, the proposed model can provide the theoretical guidance for cutting force control in high e ciency mill?ing sand mould.展开更多
The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chass...The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chassis resulting in fatigue failures.These events can seriously undermine the safety of operators and digging operations may be stopped for days,with an obvious economic impact.This work presents an analysis of the dynamics of a surface miner,focusing on the interaction between cutting machine dynamics and cutting forces,which is a new approach for this type of machine.For this purpose,the authors developed a numerical model of the cutting process made up of(1)a multi-body model of the cutting machine,which takes into account the chassis's flexibility;(2)a model of the rotating cutting head;and(3)a model of the interaction between the cutting head and rock,based on Shao's model.The model was compared with experimental results and then used to investigate the effects of cutting speed and cutting depth on the machine dynamics.展开更多
The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive ...The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.展开更多
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d...To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.展开更多
Obilque cutting of wood is an important form of cutting wood. With the developing of woodworking industry, it is widely used in wood machinary processing such as planing, milling, sawing, drilling and so on. This pape...Obilque cutting of wood is an important form of cutting wood. With the developing of woodworking industry, it is widely used in wood machinary processing such as planing, milling, sawing, drilling and so on. This paper takes oblique planing and helix milling of wood as examples. The influences of bevel angle and other factors on the cutting force have been shown. The changing rules of cutting forces have been summarized. On the basis of it, we especially carried out theoretical analysis on the changing rules of cutting forces and discussed the influence of the changing rules on practice.展开更多
Current research focussed on the assessment of metal machining process parameters and on the development of adaptive control, shows that machine performance, work-piece and tool material selections, tool life, quality...Current research focussed on the assessment of metal machining process parameters and on the development of adaptive control, shows that machine performance, work-piece and tool material selections, tool life, quality of machined surfaces, the geometry of cutting tool edges, and cutting conditions are closely related to the cutting forces. This information is of great interest to cutting tool manufactures and users alike. Over the years there have been significant developments and improvements in the equipment used to monitor such forces. In 1930 mechanical gauges were replaced by resistance strain gauges, and some 30 years later compact air gauge dynamometers were invented. Since this time intensive research has continued being directed to- wards developing new approaches to cutting force measurement. The Kistler Company, well-known manufacturer of acceleration and piezoelectrical dynamometers, has worked in this field for more than three decades, and developed very sensitive devices. While leading manufacturing research laboratories are often equipped with this technology, classical electrical strain gauges and other dynamometers of individual designs are still commonly used in industry. The present paper presents data obtained using different techniques of force measurement in metal machining processes. In particular, areas of uncertainties, illustrated through results concerning the turning process, are analysed, leading to an appraisal of the current status of these measurements and their significance.展开更多
The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing proc...The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing process.In this paper,a hobbing machining model with tool-shifting characteristics was proposed to solve the problems of cutting force fluctuation and inconsistency of tooth profile envelope accuracy at different positions of the pitch curve in noncircular gear hobbing.Based on the unit cutting force coefficient method,the undeformed chip volume generated by interrupted cutting was used to characterize the fluctuation trend of the hobbing force.The fluctuation characteristics of the cutting force generated by different hobbing models were compared and analyzed.Using the equivalent gear tooth and hob slotting numbers,an analysis model of the tooth profile envelope error of the noncircular gear was constructed.Subsequently,the tooth profile envelope errors at different positions of the pitch curve were compared and analyzed based on the constructed model.The transmission structure of the electronic gearbox was constructed based on the proposed hobbing model,and the hobbing experiment was conducted based on the selfdeveloped noncircular gear CNC hobbing system.This paper proposes a hobbing method that can effectively suppress the fluctuation of the peak and whole circumference cutting force and reduce the maximum envelope error of the whole circumference gear teeth.展开更多
The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure proce...The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure process.However,they were treated as two separate parameters in previous publications.In this study,through a series of rock block cutting tests,the relationship between them was investigated to obtain an in-depth understanding of the formation of cuttings.In addition,to validate the standpoints obtained in the aforementioned experiments,rock sheet cutting tests were conducted and the rock failure process was monitored by a high-speed camera frame by frame.The cutting force was recorded with the same sampling rate as the camera.By this design,every sampled point of cutting force can match a picture captured by the camera,which reflects the interaction between the rock and the cutter.The results indicate that the increase in cutting depth results in a transition of rock failure modes.At shallow cutting depth,ductile failure dominates and all the cuttings are produced by the compression of the cutter.The corresponding cutting force fluctuates slightly.However,beyond the critical depth,brittle failure occurs and chunk-like cuttings appear,which leads to a sharp decrease in cutting force.After that,the generation of new surface results in a significant decrease in actual cutting depth,a parameter proposed to reflect the interaction between the rock and the cutter.Consequently,ductile failure dominates again and a slight fluctuation of cutting force can be detected.As the cutter moves to the rock,the actual cutting depth gradually increases,which results in the subsequent generation of chunk-like cuttings.It is accompanied by an obvious cutting force drop.That is,ductile failure and brittle failure,one following another,present at large cutting depth.The transition of rock failure mode can be correlated with the variation of cutting force.Based on the results of this paper,the real-time monitoring of torque may be helpful to determine the efficiency of PDc bits in the downhole.展开更多
The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account...The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account of factors such as size effects,the undeformed cutting thickness,the tool blunt radius,and the tool rake angle.Therefore,this paper proposes a new theoretical calculation model for accurately predicting the cutting force in ultra-precision machining,taking account of such factors.The model is first used to analyze the material deformation of the workpiece and the cutting force distribution along the cutting edge of a diamond tool.The size of the strain zone in different cutting deformation zones is then determined by using the distribution of strain work per unit volume and considering the characteristics of the stress distribution in these different deformation zones.Finally,the cutting force during ultra-precision machining is predicted precisely by calculating the material strain energy in different zones.A finite element analysis and experimental data on ultra-precision cutting of copper and aluminum are used to verify the predictions of the theoretical model.The results show that the error in the cutting force between the calculation results and predictions of the model is less than 14%.The effects of the rake face stress distribution of the diamond tool,the close contact zone,and material elastic recovery can be fully taken into account by the theoretical model.Thus,the proposed theoretical calculation method can effectively predict the cutting force in ultra-precision machining.展开更多
Plunge milling is a high-speed machining way and the cutter is fed in the direction of the Z axis, which is used to remove excess material rapidly in roughing operations. In this paper, the orthogonal cutting theory w...Plunge milling is a high-speed machining way and the cutter is fed in the direction of the Z axis, which is used to remove excess material rapidly in roughing operations. In this paper, the orthogonal cutting theory was used to study the plunge milling of LY12 alloy. A mathematic model for cutting force in plunge milling was established, and the milling process was simulated by using Matlab. It is found that the single tooth cutting experimental result is unstable because of unsymmetrical single tooth in the milling process, which leads to the difference between the simulation and experimental results. The trend of multiple teeth cutting experimental result is similar to that of the simulation result; however, the peak values in the experimental result are different, which is caused by the error of cutter’s position, and the error of peak value is less than 10%.展开更多
Being one of their prominent exploitative characteristics, cutting tools durability depends on the character, intensity and the speed of wearing. Identification of tool wearing is of great significance for the purpose...Being one of their prominent exploitative characteristics, cutting tools durability depends on the character, intensity and the speed of wearing. Identification of tool wearing is of great significance for the purpose of avoiding sooner or later replacement of tools. The parameters of tool wearing can be measured by out-process and in-process-measuring systems. Given the extremely limiting role of the former in modern production lines, development of the latter (the indirect measuring systems) has gained prominence, The basis of indirect measuring systems comprises a set of various signals originating from the units of the system under treatment which stand in certain correlations with the wearing parameters. The paper presents mathematical models of axial force designed on the basis of experimental research in drilling tempered steel by twist drills made of high-speed steel manufactured by powder metallurgy.展开更多
The cutting forces during end milling process by using Genetic Algorithm are investigated in this paper. However, automated CNC (computer numerical control) programming by milling machine is intended to use for spec...The cutting forces during end milling process by using Genetic Algorithm are investigated in this paper. However, automated CNC (computer numerical control) programming by milling machine is intended to use for special required conditions of programming of tool path length, and analysis of cutting force and optimization of main parameters are presented. Some effective simplification of automated programming is done for cutting force. The cutting force is modelled and analyzed into mathematical simulations in order to optimize the main cutting parameters, also in this case tool path length, it is get as free trajectory. Optimization is carried out by using the Matlab/Genetic Algorithm method that excessively reduce the time and to optimize the main cutting parameters of machining. The number of experiments, measurements and results of cutting force (F~), are presented in 3D as well as in tables. In order to verify the accuracy of the 3 D simulation with optimization method, the results are compared in experimental and theoretical way. In other word, these results indicate directly that the optimized parameters are capable of machining the workpiece. Achieved results that are presented in this paper may in general help the new researcher as well as manufacturing industries of metal cutting.展开更多
文摘The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries.
基金National Natural Science Foundation of China (50435020) Natural Science Foundation of Shaanxi Province(2004E217)+1 种基金the Doctorate Creation Foundation of Northwestern Polytechnical Uni-versity (CX200411)Youth for NPU Teachers Scientific and Technologi-cal Innovation Foundation
文摘A new mechanistic cutting force model for flat end milling using the instantaneous cutting force coefficients is proposed. An in-depth analysis shows that the total cutting forces can be separated into two terms: a nominal component independent of the runout and a perturbation component induced by the runout. The instantaneous value of the nominal component is used to calibrate the cutting force coefficients. With the help of the perturbation component and the cutting force coefficients obtained above, the cutter runout is identified. Based on simulation and experimental results, the validity of the identification approach is demonstrated. The advantage of the proposed method lies in that the calibration performed with data of one cutting test under a specific regime can be applied for a great range of cutting conditions.
基金Research Project Supported by Shanxi Scholarship Council of China(No.2013-086)
文摘Cutting force measurement has become a crucial activity for enhancing machining process performance. This paper described the design and fabrication of embedded Ni-chrome thin-film micro-sensors in tool holders to measure the cutting force in machining operations. A Ni-chrome thin-film sensor device is embedded within a substrate structure through a dy- namic brazing process, which consists of a Ti6A14V substrate, a nickel-chromium thin-film sensor and an alumina insulating layer. The Wheatstone bridge which consists of four sensors would produce the output voltage when the thin film caused de- formation by the cutting forces. The relationship between input and output voltages was theoretically analyzed. According- ly, an in-process cutting force measurement system is established. The results show that the thin-film sensor had good lineari- ty and less mutual interference, and it is suitable for all kinds of turning forces under the measurement conditions.
基金Projects 2008AA062202 supported by the Hi-tech Research and Development Program of ChinaCX08B_041Z by the Innovation Foundation of Jiangsu Graduate Students
文摘Cutting tests were done using a test bed designed to measure pick cutting forces when cutting coal and rock.The test equipment has a drum with two starting helical vanes.Cutting forces on a pick were measured as a function of coal compressive strength,pick carbide tip diameter and the cutting depth per drum revolution.The results show that the cutting force is linearly related to the compressive strength.The relationship between the cutting force and both the carbide tip diameter and the cutting depth are exponential.Fluctuation in the cutting force does not increase with coal compressive strength but it has a linear relationship to tip diameter.A plot of cutting force fluctuations versus the cutting depth follows a sigmoidal curve.Based on the analysis of these test results a theoretical basis is supplied for design and effective use of shearer drums.
基金supported by Hunan Provincial Natural Science Foundation of China (Grant Nos. 10JJ2040, 11JJ3055)National Major Science and Technology Special Projects of China (Grant No.2012ZX04011-011)+1 种基金Postdoctoral Science Funded Project of China (GrantNo. 20110490261)Hunan Provincial 12th Five-year Plan Key Disciplines of China (Grant No. 2012-42)
文摘Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications.
基金Project (No. DEARS/CASR/R-01/2001/D-934 (30)) supported by Directorate of Advisory Extension and Research Services (DAERS), Committee for Advanced Studies & Research (CASR), BUET, Dhaka, Bangladesh
文摘In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intru- siveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimen- sional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.
文摘In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.
基金National Defense Foundation Pre-Research Science Challenge Project(Grant No.JCKY2016212A506-0107)Development Funds of China Academy of Engineering Physics(Grant No.2015B0203029).
文摘Pure iron is one of the difficult-to-machine materials due to its large chip deformation,adhesion,work-hardening,and built-up edges formation during machining.This leads to a large workpiece deformation and challenge to meet the required technical indicators.Therefore,under varying the grain size of pure iron,the influence of cutting speed,feed,and depth of cut on the cutting force,heat generation,and machining residual stresses were explored in the turning process to improve the machinability without compromising the mechanical properties of the material.The experimental findings have depicted that the influence of grain size on cutting force in the precision turning process is not apparent.However,the cutting temperature and residual stress of machining fine-grain iron were much smaller than the coarse grain at all levels of cutting parameters.
基金National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.51525503)
文摘Cutting force is one of the research hotspots in direct sand mould milling because the cutting force directly a ects the machining quality and tool wear. Unlike metals, sand mould is a heterogeneous discrete deposition material. There is still a lack of theoretical research on the cutting force. In order to realize the prediction and control of the cut?ting force in the sand mould milling process, an analytical model of cutting force is proposed based on the unequal division shear zone model of orthogonal cutting. The deformation velocity relations of the chip within the orthogonal cutting shear zone are analyzed first. According to the flow behavior of granular, the unequal division shear zone model of sand mould is presented, in which the governing equations of shear strain rate, strain and velocity are estab?lished. The constitutive relationship of quasi?solid–liquid transition is introduced to build the 2D constitutive equation and deduce the cutting stress in the mould shear zone. According to the cutting geometric relations of up milling with straight cutting edge and the transformation relationship between cutting stress and cutting force, the dynamic cutting forces are predicted for di erent milling conditions. Compared with the experimental results, the predicted results show good agreement, indicating that the predictive model of cutting force in milling sand mould is validated. Therefore, the proposed model can provide the theoretical guidance for cutting force control in high e ciency mill?ing sand mould.
文摘The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chassis resulting in fatigue failures.These events can seriously undermine the safety of operators and digging operations may be stopped for days,with an obvious economic impact.This work presents an analysis of the dynamics of a surface miner,focusing on the interaction between cutting machine dynamics and cutting forces,which is a new approach for this type of machine.For this purpose,the authors developed a numerical model of the cutting process made up of(1)a multi-body model of the cutting machine,which takes into account the chassis's flexibility;(2)a model of the rotating cutting head;and(3)a model of the interaction between the cutting head and rock,based on Shao's model.The model was compared with experimental results and then used to investigate the effects of cutting speed and cutting depth on the machine dynamics.
基金supported by the Joint Funds of The National Natural Science Foundation of China(Grant No.U19B6003-05)the National Key Research and Development Program of China(No.2019YFA0708302)+2 种基金the National Science Fund for Distinguished Young Scholars(Grant No.51725404)the Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201911414038)the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01).
文摘The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.
基金Supported by the National Natural Science Foundation of China(50975141)the Aviation Science Fund(20091652018,2010352005)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX04003031-4)
文摘To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.
文摘Obilque cutting of wood is an important form of cutting wood. With the developing of woodworking industry, it is widely used in wood machinary processing such as planing, milling, sawing, drilling and so on. This paper takes oblique planing and helix milling of wood as examples. The influences of bevel angle and other factors on the cutting force have been shown. The changing rules of cutting forces have been summarized. On the basis of it, we especially carried out theoretical analysis on the changing rules of cutting forces and discussed the influence of the changing rules on practice.
基金Project supported by the Postgraduate Award of University of SouthAustralia, Australia
文摘Current research focussed on the assessment of metal machining process parameters and on the development of adaptive control, shows that machine performance, work-piece and tool material selections, tool life, quality of machined surfaces, the geometry of cutting tool edges, and cutting conditions are closely related to the cutting forces. This information is of great interest to cutting tool manufactures and users alike. Over the years there have been significant developments and improvements in the equipment used to monitor such forces. In 1930 mechanical gauges were replaced by resistance strain gauges, and some 30 years later compact air gauge dynamometers were invented. Since this time intensive research has continued being directed to- wards developing new approaches to cutting force measurement. The Kistler Company, well-known manufacturer of acceleration and piezoelectrical dynamometers, has worked in this field for more than three decades, and developed very sensitive devices. While leading manufacturing research laboratories are often equipped with this technology, classical electrical strain gauges and other dynamometers of individual designs are still commonly used in industry. The present paper presents data obtained using different techniques of force measurement in metal machining processes. In particular, areas of uncertainties, illustrated through results concerning the turning process, are analysed, leading to an appraisal of the current status of these measurements and their significance.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075142 and U22B2084).
文摘The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing process.In this paper,a hobbing machining model with tool-shifting characteristics was proposed to solve the problems of cutting force fluctuation and inconsistency of tooth profile envelope accuracy at different positions of the pitch curve in noncircular gear hobbing.Based on the unit cutting force coefficient method,the undeformed chip volume generated by interrupted cutting was used to characterize the fluctuation trend of the hobbing force.The fluctuation characteristics of the cutting force generated by different hobbing models were compared and analyzed.Using the equivalent gear tooth and hob slotting numbers,an analysis model of the tooth profile envelope error of the noncircular gear was constructed.Subsequently,the tooth profile envelope errors at different positions of the pitch curve were compared and analyzed based on the constructed model.The transmission structure of the electronic gearbox was constructed based on the proposed hobbing model,and the hobbing experiment was conducted based on the selfdeveloped noncircular gear CNC hobbing system.This paper proposes a hobbing method that can effectively suppress the fluctuation of the peak and whole circumference cutting force and reduce the maximum envelope error of the whole circumference gear teeth.
基金support from the National Natural Science Foundation of China(52204004)the National Science Fund for Distinguished Young Scholars(51725404)。
文摘The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure process.However,they were treated as two separate parameters in previous publications.In this study,through a series of rock block cutting tests,the relationship between them was investigated to obtain an in-depth understanding of the formation of cuttings.In addition,to validate the standpoints obtained in the aforementioned experiments,rock sheet cutting tests were conducted and the rock failure process was monitored by a high-speed camera frame by frame.The cutting force was recorded with the same sampling rate as the camera.By this design,every sampled point of cutting force can match a picture captured by the camera,which reflects the interaction between the rock and the cutter.The results indicate that the increase in cutting depth results in a transition of rock failure modes.At shallow cutting depth,ductile failure dominates and all the cuttings are produced by the compression of the cutter.The corresponding cutting force fluctuates slightly.However,beyond the critical depth,brittle failure occurs and chunk-like cuttings appear,which leads to a sharp decrease in cutting force.After that,the generation of new surface results in a significant decrease in actual cutting depth,a parameter proposed to reflect the interaction between the rock and the cutter.Consequently,ductile failure dominates again and a slight fluctuation of cutting force can be detected.As the cutter moves to the rock,the actual cutting depth gradually increases,which results in the subsequent generation of chunk-like cuttings.It is accompanied by an obvious cutting force drop.That is,ductile failure and brittle failure,one following another,present at large cutting depth.The transition of rock failure mode can be correlated with the variation of cutting force.Based on the results of this paper,the real-time monitoring of torque may be helpful to determine the efficiency of PDc bits in the downhole.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51305278)the Liaoning Revitalization Talents Program,China(GrantNo.XLYC2007133)the Natural Science Foundation of Liaoning Province,China(GrantNo.2020-MS-213).
文摘The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account of factors such as size effects,the undeformed cutting thickness,the tool blunt radius,and the tool rake angle.Therefore,this paper proposes a new theoretical calculation model for accurately predicting the cutting force in ultra-precision machining,taking account of such factors.The model is first used to analyze the material deformation of the workpiece and the cutting force distribution along the cutting edge of a diamond tool.The size of the strain zone in different cutting deformation zones is then determined by using the distribution of strain work per unit volume and considering the characteristics of the stress distribution in these different deformation zones.Finally,the cutting force during ultra-precision machining is predicted precisely by calculating the material strain energy in different zones.A finite element analysis and experimental data on ultra-precision cutting of copper and aluminum are used to verify the predictions of the theoretical model.The results show that the error in the cutting force between the calculation results and predictions of the model is less than 14%.The effects of the rake face stress distribution of the diamond tool,the close contact zone,and material elastic recovery can be fully taken into account by the theoretical model.Thus,the proposed theoretical calculation method can effectively predict the cutting force in ultra-precision machining.
基金Supported by Advanced Manufacturing Technology-Key Laboratory of Beijing Municipality Project(No.10200531)Tianjin University-Kenna-metal Joint Project+1 种基金Young Teacher Foundation of Tianjin UniversityApparatus Foundation of Tianjin University.
文摘Plunge milling is a high-speed machining way and the cutter is fed in the direction of the Z axis, which is used to remove excess material rapidly in roughing operations. In this paper, the orthogonal cutting theory was used to study the plunge milling of LY12 alloy. A mathematic model for cutting force in plunge milling was established, and the milling process was simulated by using Matlab. It is found that the single tooth cutting experimental result is unstable because of unsymmetrical single tooth in the milling process, which leads to the difference between the simulation and experimental results. The trend of multiple teeth cutting experimental result is similar to that of the simulation result; however, the peak values in the experimental result are different, which is caused by the error of cutter’s position, and the error of peak value is less than 10%.
文摘Being one of their prominent exploitative characteristics, cutting tools durability depends on the character, intensity and the speed of wearing. Identification of tool wearing is of great significance for the purpose of avoiding sooner or later replacement of tools. The parameters of tool wearing can be measured by out-process and in-process-measuring systems. Given the extremely limiting role of the former in modern production lines, development of the latter (the indirect measuring systems) has gained prominence, The basis of indirect measuring systems comprises a set of various signals originating from the units of the system under treatment which stand in certain correlations with the wearing parameters. The paper presents mathematical models of axial force designed on the basis of experimental research in drilling tempered steel by twist drills made of high-speed steel manufactured by powder metallurgy.
文摘The cutting forces during end milling process by using Genetic Algorithm are investigated in this paper. However, automated CNC (computer numerical control) programming by milling machine is intended to use for special required conditions of programming of tool path length, and analysis of cutting force and optimization of main parameters are presented. Some effective simplification of automated programming is done for cutting force. The cutting force is modelled and analyzed into mathematical simulations in order to optimize the main cutting parameters, also in this case tool path length, it is get as free trajectory. Optimization is carried out by using the Matlab/Genetic Algorithm method that excessively reduce the time and to optimize the main cutting parameters of machining. The number of experiments, measurements and results of cutting force (F~), are presented in 3D as well as in tables. In order to verify the accuracy of the 3 D simulation with optimization method, the results are compared in experimental and theoretical way. In other word, these results indicate directly that the optimized parameters are capable of machining the workpiece. Achieved results that are presented in this paper may in general help the new researcher as well as manufacturing industries of metal cutting.