期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Friction behaviors in the metal cutting process:state of the art and future perspectives 被引量:1
1
作者 Xiaoliang Liang Zhanqiang Liu +2 位作者 Bing Wang Chunjin Wang Chi Fai Cheung 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期22-58,共37页
Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool... Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology. 展开更多
关键词 cutting process friction behaviors material removal process contact condition
下载PDF
Adiabatic Shear Mechanisms for the Hard Cutting Process 被引量:5
2
作者 YUE Caixu WANG Bo +2 位作者 LIU Xianli FENG Huize CAI Chunbin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期592-598,共7页
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. Fo... The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride(PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters. 展开更多
关键词 adiabatic shear FEM simulation hard cutting process sawtooth chip
下载PDF
Finite element analysis of the end cutting process for U-section parts with high-strength steel 被引量:1
3
作者 SHI Lei1,2),DONG Liang3),XIAO Hua1,2),HAN Fei1,2) and LI Shuhui3) 1) Auto Steel Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 2) State Key Laboratory of Development and Application Technology of Automotive Steels (BaoSteel),Shanghai 201900,China 3) Shanghai Jiaotong University,Shanghai 200240,China 《Baosteel Technical Research》 CAS 2012年第1期32-36,共5页
This paper presents a constitutive framework for finite element analysis of the truck beam end cutting process.For this purpose,a finite strain anisotropic elasto-plastic model,which takes nonlinear kinematic and isot... This paper presents a constitutive framework for finite element analysis of the truck beam end cutting process.For this purpose,a finite strain anisotropic elasto-plastic model,which takes nonlinear kinematic and isotropic hardening into account,is presented.Three factors are investigated to determine the effect on cutting quality:radius of cutting tools,strength of materials and relative clearance in cutting.The recommendations made herein are based on the simulation results. 展开更多
关键词 finite element analysis end cutting process high-strength steel
下载PDF
Relative Varying Dynamics Based Whole Cutting Process Optimization for Thin‑walled Parts
4
作者 Yuyang Tang Jun Zhang +3 位作者 Jia Yin Lele Bai Huijie Zhang Wanhua Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期194-206,共13页
Thin-walled parts are typically difficult-to-cut components due to the complex dynamics in cutting process.The dynamics is variant for part during machining,but invariant for machine tool.The variation of the relative... Thin-walled parts are typically difficult-to-cut components due to the complex dynamics in cutting process.The dynamics is variant for part during machining,but invariant for machine tool.The variation of the relative dynamics results in the difference of cutting stage division and cutting parameter selection.This paper develops a novel method for whole cutting process optimization based on the relative varying dynamic characteristic of machining system.A new strategy to distinguish cutting stages depending on the dominated dynamics during machining process is proposed,and a thickness-dependent model to predict the dynamics of part is developed.Optimal cutting parameters change with stages,which can be divided by the critical thickness of part.Based on the dynamics comparison between machine tool and thickness-varying part,the critical thicknesses are predicted by an iterative algorithm.The proposed method is validated by the machining of three benchmarks.Good agreements have been obtained between prediction and experimental results in terms of stages identification,meanwhile,the optimized parameters perform well during the whole cutting process. 展开更多
关键词 Thin-walled parts Varying dynamics Frequency response function Whole cutting process OPTIMIZATION
下载PDF
Conventional and micro scale finite element modeling for metal cutting process:A review
5
作者 Le WANG Caixu YUE +3 位作者 Xianli LIU Ming LI Yongshi XU Steven Y.LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期199-232,共34页
The metal cutting process is accompanied by complex stress field,strain field,temperature field.The comprehensive effects of process parameters on chip morphology,cutting force,tool wear and residual stress are comple... The metal cutting process is accompanied by complex stress field,strain field,temperature field.The comprehensive effects of process parameters on chip morphology,cutting force,tool wear and residual stress are complex and inter-connected.Finite element method(FEM)is considered as an effective method to predict process variables and reveal microscopic physical phenomena in the cutting process.Therefore,the finite element(FE)simulation is used to research the conventional and micro scale cutting process,and the differences in the establishment of process variable FE simulation models are distinguished,thereby improving the accuracy of FE simulation.The reliability and effectiveness of FE simulation model largely depend on the accuracy of the simulation method,constitutive model,friction model,damage model in describing mesh element,the dynamic mechanical behavior of materials,the tool-chip-workpiece contact process and the chip formation mechanism.In this paper,the FE models of conventional and micro process variables are comprehensively and up-to-date reviewed for different materials and machining methods.The purpose is to establish a FE model that is more in line with the real cutting conditions,and to provide the possibility for optimizing the cutting process variables.The development direction of FE simulation of metal cutting process is discussed,which provides guidance for future cutting process modeling. 展开更多
关键词 Conventional and micro scale Finite element simulation Metal cutting process Micro cutting MODELING
原文传递
Analysis and test of splitting failure in the cutting process of cabbage root 被引量:3
6
作者 Du Dongdong Wang Jun Qiu Shanshan 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2015年第4期27-34,共8页
Cabbage harvester is very useful to replace the manual cabbage harvesting in China.The cutter with single-point clamping way can reduce the maximum and the average cutting force effectively,but may increase the splitt... Cabbage harvester is very useful to replace the manual cabbage harvesting in China.The cutter with single-point clamping way can reduce the maximum and the average cutting force effectively,but may increase the splitting failure.In this study,the mechanics model of cabbage root with single-point clamping way in cutting process was established.According to the analysis of mechanics model,when the sheer stress exceeded the sheer strength(τa>τ0),splitting failure began to occur.Meanwhile,if the maximum normal stress exceeded the tensile strength(σmax>σ0),the splitting failure would further become riving failure.The positions of splitting failure would almost locate at the cutting depth l equaled to R+r(l=R+r).To reduce the splitting failure,single factor and multi-factor cutting tests about the effect of sliding angle,cutting speed and cutting diameter on splitting failure were carried out.The results showed that the splitting failure would reduce with the increase of sliding angle,cutting speed and cutting diameter.Sliding angle,cutting speed,cutting diameter and the interactions of cutting speed with sliding angle and cutting diameter had significant effect on splitting failure level,and the interaction of sliding angle with cutting diameter and the 3 factors’interaction had no effect.To minimize splitting failure levels,the best cutting combination was that:sliding angle 40°,cutting speed 300 mm/min and cutting diameter 35 mm.This research can provide a basis of how to design a cutter for the cabbage harvester including the optimized cutting combination. 展开更多
关键词 CABBAGE cutting process splitting failure mechanics analysis TESTS
原文传递
Effect of cutting process on machine tool noise
7
作者 C.H.KU 《Chinese Journal of Acoustics》 1990年第4期347-357,共11页
Based on the principle of Statistical Energy Analysis (SEA) for non-conservatively coupled systems under general excitations, relationship between noise radiated from and excitations on coupled complex structures is s... Based on the principle of Statistical Energy Analysis (SEA) for non-conservatively coupled systems under general excitations, relationship between noise radiated from and excitations on coupled complex structures is studied, which lays a foundation for the determination of noise/vibration energy by evaluation of exciting forces, and from that the quantitative analysis of the effects of an excitation on sound power from a sub-structure can be done. With extending of the relationship to the study of cutting noise, regression analysis method for evaluating the effects of cutting process on machine tool noise is established. Results show that cutting process has generally negligible effects on machine tool noise, and there is no apparent difference between machine tool noise in cutting condition and in idle one. 展开更多
关键词 TING Effect of cutting process on machine tool noise
原文传递
Effects of Electropulsing Cutting on the Quenched and Tempered 45 Steel Rods 被引量:1
8
作者 陈龙 WANG Haibo +3 位作者 LIU Dan YE Xiaoxin LI Xiaohui 唐国翌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第1期204-211,共8页
Electropulsing is introduced into the cutting process for quenched and tempered 45 steel, which is a novel method to improve the material machinability compared with the conventional cutting process. The effects of el... Electropulsing is introduced into the cutting process for quenched and tempered 45 steel, which is a novel method to improve the material machinability compared with the conventional cutting process. The effects of electropulsing on cutting performances, microstructure evolution, and surface qualities of 45 steel rods were studied. The results indicate that electropulsing is beneficial for the cutting process in 3 aspects as follows:(1) reducing the principal cutting force, surface microhardness and surface roughness of the machined sample dramatically;(2) improving the machining efficiency and prolonging the life of cutting tools;(3) decreasing the thickness of rheological layer which was usually caused by work hardening in the cutting process. The morphology and microstructure of the cutting chips showed that the length of the chips increased significantly with the increase of the current density. The advantage of electropulsing is that it can improve the plastic deformation capability as well as increase the lubricating property between the specimen and the cutting tool. 展开更多
关键词 ELECTROPULSING cutting process surface roughness plastic deformation lubricating property
下载PDF
Production of N2O in two biologic nitrogen removal processes: a comparison between conventional and short-cut Nitrogen removal processes 被引量:2
9
作者 Youkui GONG Yongzhen PENG +1 位作者 Shuying WANG Sai WANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第4期589-597,共9页
The N2O production in two nitrogen removal processes treating domestic wastewater was investigated in laboratory-scale aerobic-anoxic sequencing batch reactors (SBRs). Results showed that N2O emission happened in th... The N2O production in two nitrogen removal processes treating domestic wastewater was investigated in laboratory-scale aerobic-anoxic sequencing batch reactors (SBRs). Results showed that N2O emission happened in the aerobic phase rather than in the anoxic phase. During the aerobic phase, the nitrogen conversion to N2O gas was 27.7% and 36.8% of NH+-N loss for conventional biologic N-removal process and short-cut biologic N-removal process. The dissolved N2O was reduced to N2 in the anoxic denitrification phase. The N2O production rate increased with the increasing of nitrite concentration and ceased when NH+-N oxidation was terminated. Higher nitrite accumulation resulted in higher NEO emission in the short-cut nitrogen removal process. Pulse-wise addition of 20 mg NO2 -N. L- 1 gave rise to 3-fold of N2O emission in the conventional N-removal process, while little change happened with 20 mg NOS-N L-1 was added to SBR1. 展开更多
关键词 conventional N-removal process N2O short- cut N-removal process nitrite accumulation ammonia-oxidizing bacteria (AOB) denitrification
原文传递
Energy transfer and luminescent properties of Tb^(3+)and Tb^(3+),Yb^(3+)doped CNGG phosphors
10
作者 S.Hau G.Stanciu +2 位作者 D.Avram L.Gheorghe C.Gheorghe 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第9期1445-1453,I0004,共10页
In this work,calcium niobium gallium garnet(Ca_(3)Nb_(1.6875)Ga_(3.1875)O_(12)-CNGG)ceramic samples singledoped with Tb^(3+)and co-doped with Tb^(3+)and Yb^(3+)ions were sintered by the solid-state reaction method.The... In this work,calcium niobium gallium garnet(Ca_(3)Nb_(1.6875)Ga_(3.1875)O_(12)-CNGG)ceramic samples singledoped with Tb^(3+)and co-doped with Tb^(3+)and Yb^(3+)ions were sintered by the solid-state reaction method.The structural characterization of the samples was carried out by X-ray diffraction measurements.The optimal concentration of Tb^(3+)ions corresponding to the maximum luminescence in the green spectral range in CNGG:x at%Tb(x=0.1,0.5,1,2,3,4,and 5)was determined to be 4 at%.The timeresolved luminescence of the^(5)D_(4)level(Tb^(3+))in the CNGG:x at%Tb samples was analysed to explore the quenching mechanisms involved in the Tb^(3+)green emission.Co-doped CNGG:4 at%Tb,y at%Yb(y=0.5,2,4,6,8,and 10)ceramics were prepared and investigated.It is shown that CNGG:4 at%Tb,y at%Yb phosphors exhibit intense green luminescence under ultra-violet(UV),visible(VIS),and near-infrared(NIR)excitation,thus demonstrating the presence of simultaneous down-conversion(DC)and upconversion(UC)processes.The dependence of the UC luminescence intensity on the diode laser pumping power was measured and the results indicate a two-photon process based on cooperative energy transfer(CET).Under UV excitation,the lifetime of the^(5)D_(4)(Tb^(3+))level slowly increases with increase of Yb^(3+)concentration,suggesting the energy transfer from Yb^(3+)to Tb^(3+)ions,while under NIR excitation,the lifetime of the^(5)D_(4)(Tb^(3+))level decreases with increase of Yb^(3+)ions concentration,indicating the presence of a strong energy transfer from Tb^(3+)to Yb^(3+)ions.The highest energy transfer efficiency ofη_(ET)≈42%was determined for the CNGG:4 at%Tb,10 at%Yb sample.The obtained results indicate that CNGG:(Tb^(3+),Yb^(3+))could be efficient new yellowish-green-emitting phosphors. 展开更多
关键词 PHOSPHORS Tb^(3+)and Tb^(3+)-Yb^(3+)luminescence properties UP-CONVERSION DOWN-CONVERSION Quantum cutting process Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部