Normally large amounts of particles are required to accurately simulate the metal cutting process,which consumes a lot of computing time and storage.Adaptive techniques can help decrease the number of particles,hence ...Normally large amounts of particles are required to accurately simulate the metal cutting process,which consumes a lot of computing time and storage.Adaptive techniques can help decrease the number of particles,hence reducing the runtime.This paper presents a novel adaptive smoothed particle hydrodynamics(SPH)method for the metal cutting simulation.The spatial resolution changes adaptively according to the distance to the tool tip by the particle splitting and merging.More particles are selected in the region where the workpiece and the tool are in contact.Since the contact region constantly changes during the cutting process,two quadrilateral frames are adopted in the adaptive algorithm to dynamically change the distribution of particles.One frame for the refinement,the other for the coarsening.These frames move at the same speed as the tool.To test the computational efficiency,the metal cutting process is simulated by using SPH with three different adaptive approaches.Numerical results show that the proposed adaptive algorithm with dynamic refinement and coarsening can significantly optimize the runtime.展开更多
By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stre...By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stress concentration was deceased by weighted analysis. The effects of different cut velocities and cutting thickness on life-spans of reamers were investigated, and the cutting parameters were optimized to satisfy the cutting precision and cutting efficiency. The study will provide a guide for the practical production.展开更多
Based on the finite element method,the model was established to predict the deformation of large thin-walled ring during machining.After the simulation of heat treatment and 3D cutting process,the factors of initial r...Based on the finite element method,the model was established to predict the deformation of large thin-walled ring during machining.After the simulation of heat treatment and 3D cutting process,the factors of initial residual stress,clamping operation,cutting loads and thermal stresses were investigated to evaluate the machining deformation.The results showed that the main factor which influenced machining deformation was initial residual stress produced in quenching process.Improving the clamping method could decrease the machining deformation caused by the release of residual stresses.In the process of finish machining,the cutting force and cutting temperature were low which caused little effect on machining deformation.展开更多
We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and m...We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning.展开更多
Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work w...Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12002290 and 11772274).
文摘Normally large amounts of particles are required to accurately simulate the metal cutting process,which consumes a lot of computing time and storage.Adaptive techniques can help decrease the number of particles,hence reducing the runtime.This paper presents a novel adaptive smoothed particle hydrodynamics(SPH)method for the metal cutting simulation.The spatial resolution changes adaptively according to the distance to the tool tip by the particle splitting and merging.More particles are selected in the region where the workpiece and the tool are in contact.Since the contact region constantly changes during the cutting process,two quadrilateral frames are adopted in the adaptive algorithm to dynamically change the distribution of particles.One frame for the refinement,the other for the coarsening.These frames move at the same speed as the tool.To test the computational efficiency,the metal cutting process is simulated by using SPH with three different adaptive approaches.Numerical results show that the proposed adaptive algorithm with dynamic refinement and coarsening can significantly optimize the runtime.
文摘By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stress concentration was deceased by weighted analysis. The effects of different cut velocities and cutting thickness on life-spans of reamers were investigated, and the cutting parameters were optimized to satisfy the cutting precision and cutting efficiency. The study will provide a guide for the practical production.
文摘Based on the finite element method,the model was established to predict the deformation of large thin-walled ring during machining.After the simulation of heat treatment and 3D cutting process,the factors of initial residual stress,clamping operation,cutting loads and thermal stresses were investigated to evaluate the machining deformation.The results showed that the main factor which influenced machining deformation was initial residual stress produced in quenching process.Improving the clamping method could decrease the machining deformation caused by the release of residual stresses.In the process of finish machining,the cutting force and cutting temperature were low which caused little effect on machining deformation.
基金Funded by the National High-Tech R&D Program(863 Program)of China(No.2012AA040405)
文摘We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning.
基金Projects(51075401,U1334205)supported by the National Natural Science Foundation of ChinaProject supported by the Scholarship Award for Excellent Innovative Doctoral Student granted by Central South University of ChinaProject(132014)supported by the Fok Ying Tong Education Foundation,China
文摘Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.