The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual user...The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual users and organizations from the online threats of data poaching and pilferage.The widespread usage of Information Technology(IT)and IT Enable Services(ITES)reinforces securitymeasures.The constantly evolving cyber threats are a topic that is generating a lot of discussion.In this league,the present article enlists a broad perspective on how cybercrime is developing in KSA at present and also takes a look at some of the most significant attacks that have taken place in the region.The existing legislative framework and measures in the KSA are geared toward deterring criminal activity online.Different competency models have been devised to address the necessary cybercrime competencies in this context.The research specialists in this domain can benefit more by developing a master competency level for achieving optimum security.To address this research query,the present assessment uses the Fuzzy Decision-Making Trial and Evaluation Laboratory(Fuzzy-DMTAEL),Fuzzy Analytic Hierarchy Process(F.AHP),and Fuzzy TOPSIS methodology to achieve segment-wise competency development in cyber security policy.The similarities and differences between the three methods are also discussed.This cybersecurity analysis determined that the National Cyber Security Centre got the highest priority.The study concludes by perusing the challenges that still need to be examined and resolved in effectuating more credible and efficacious online security mechanisms to offer amoreempowered ITES-driven economy for SaudiArabia.Moreover,cybersecurity specialists and policymakers need to collate their efforts to protect the country’s digital assets in the era of overt and covert cyber warfare.展开更多
Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algori...Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.展开更多
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated...The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.展开更多
This paper studies cyber risk management by integrating contextual log analysis with User and Entity Behavior Analytics (UEBA). Leveraging Python scripting and PostgreSQL database management, the solution enriches log...This paper studies cyber risk management by integrating contextual log analysis with User and Entity Behavior Analytics (UEBA). Leveraging Python scripting and PostgreSQL database management, the solution enriches log data with contextual and behavioral information from Linux system logs and semantic datasets. By incorporating Common Vulnerability Scoring System (CVSS) metrics and customized risk scoring algorithms, the system calculates Insider Threat scores to identify potential security breaches. The integration of contextual log analysis and UEBA [1] offers a proactive defense against insider threats, reducing false positives and prioritizing high-risk alerts.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen o...This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen or undermine infrastructural functions and organize the networks. In addition, the essay delves into AI’s role in Cyber security software development and the need for AI-resilient strategies that could anticipate and thwart AI-created vulnerabilities. The document also touched on the socioeconomic ramifications of the emergence of AI in Cyber security as well. Looking into AI and security literature, the report outlines benefits including made threat detection precision, extended security ops efficiency, and preventive security tasks. At the same time, it emphasizes the positive side of AI, but it also shows potential limitations such as data bias, lack of interpretability, ethical concerns, and security flaws. The work similarly focuses on the characterized of misuse and sophisticated cyberattacks. The research suggests ways to diminish AI-generating maleficence which comprise ethical AI development, robust safety measures and constant audits and updates. With regard to the AI application in Cyber security, there are both pros and cons in terms of socio-economic issues, for example, job displacement, economic growth and the change in the required workforce skills.展开更多
Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes metho...Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.展开更多
Cyber security addresses the protection of information systems in cyberspace. These systems face multiple attacks on a daily basis, with the level of complication getting increasingly challenging. Despite the existenc...Cyber security addresses the protection of information systems in cyberspace. These systems face multiple attacks on a daily basis, with the level of complication getting increasingly challenging. Despite the existence of multiple solutions, attackers are still quite successful at identifying vulnerabilities to exploit. This is why cyber deception is increasingly being used to divert attackers’ attention and, therefore, enhance the security of information systems. To be effective, deception environments need fake data. This is where Natural Language (NLP) Processing comes in. Many cyber security models have used NLP for vulnerability detection in information systems, email classification, fake citation detection, and many others. Although it is used for text generation, existing models seem to be unsuitable for data generation in a deception environment. Our goal is to use text generation in NLP to generate data in the deception context that will be used to build multi-level deception in information systems. Our model consists of three (3) components, including the connection component, the deception component, composed of several states in which an attacker may be, depending on whether he is malicious or not, and the text generation component. The text generation component considers as input the real data of the information system and allows the production of several texts as output, which are usable at different deception levels.展开更多
In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in ...In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in combating cyber attacks.Named Entity Recognition(NER),as a crucial component of text mining,can structure complex CTI text and aid cybersecurity professionals in effectively countering threats.However,current CTI NER research has mainly focused on studying English CTI.In the limited studies conducted on Chinese text,existing models have shown poor performance.To fully utilize the power of Chinese pre-trained language models(PLMs)and conquer the problem of lengthy infrequent English words mixing in the Chinese CTIs,we propose a residual dilated convolutional neural network(RDCNN)with a conditional random field(CRF)based on a robustly optimized bidirectional encoder representation from transformers pre-training approach with whole word masking(RoBERTa-wwm),abbreviated as RoBERTa-wwm-RDCNN-CRF.We are the first to experiment on the relevant open source dataset and achieve an F1-score of 82.35%,which exceeds the common baseline model bidirectional encoder representation from transformers(BERT)-bidirectional long short-term memory(BiLSTM)-CRF in this field by about 19.52%and exceeds the current state-of-the-art model,BERT-RDCNN-CRF,by about 3.53%.In addition,we conducted an ablation study on the encoder part of the model to verify the effectiveness of the proposed model and an in-depth investigation of the PLMs and encoder part of the model to verify the effectiveness of the proposed model.The RoBERTa-wwm-RDCNN-CRF model,the shared pre-processing,and augmentation methods can serve the subsequent fundamental tasks such as cybersecurity information extraction and knowledge graph construction,contributing to important applications in downstream tasks such as intrusion detection and advanced persistent threat(APT)attack detection.展开更多
Since taking office, the Trump administration's anti-terrorism policy has become increasingly clear. Its anti-terrorism measures and its internal and external anti-terrorism policies have introduced new features t...Since taking office, the Trump administration's anti-terrorism policy has become increasingly clear. Its anti-terrorism measures and its internal and external anti-terrorism policies have introduced new features that are distinct from those of the Obama administration. These include linking terrorism to Islam, violating traditional political correctness in order to enhance homeland security, sending large-scale troops to the Middle East, and delegating more authority to the US Defense Department and the Armed Forces. Trump's anti-terrorism policies have made obvious progress both at home and abroad. Along with the adjustment of its national security strategy, the status of the anti-terrorism policy in Trump's national security strategy and national defense strategy will decline.However, for the foreseeable future, anti-terrorism will remain an important issue for the Trump Administration, and in some circumstances,the investment for it may increase.展开更多
The September 11 event upset Japan’s diplomatic agenda and ushered in a strategic restructuring with the focus on anti-terrorism and the top priority given to ties with Washington. Its new diplomacy against terror st...The September 11 event upset Japan’s diplomatic agenda and ushered in a strategic restructuring with the focus on anti-terrorism and the top priority given to ties with Washington. Its new diplomacy against terror stresses three aspects: policy towards Washington for ensuring strategic center展开更多
This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator fault...This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator faults.Based on the fractional Lyapunov stability theory and the finite-time stability theory,a fractional-order nonsingular fast terminal sliding mode(FONFTSM)control law is proposed to promote the tracking and fault tolerance performance of the considered system.Meanwhile,the adaptive fractional-order update laws are designed to cope with the unknown upper bounds of the unknown actuator faults and external disturbances.Furthermore,the finite-time stability of the closed-loop system is proved.Finally,comparison simulation results are also provided to show the validity and the advantages of the proposed techniques.展开更多
The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cy...The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text.展开更多
This article briefly outlines how anti-terrorism struggles became linked and their relationship thereafter with human rights issues in international political life. With equal relevance and value to human development,...This article briefly outlines how anti-terrorism struggles became linked and their relationship thereafter with human rights issues in international political life. With equal relevance and value to human development, anti-terrorism efforts and human rights protection are themselves not mutually exclusive or contradictory. Their conflict in everyday life has sometimes resulted from the fact that they are both manipulated in the service of certain political ends. What's more, there has never been p erfect human rights protection in the world so far, which often makes human rights problems an easy charge against almost every government. No anti-terrorist activities in either the US or Europe have been really constrained by the idea of human rights no matter how beautiful their rhetoric has been. Now both human rights and anti-terrorism have been made into a tool of diplomacy and international politics. With the war in Afghanistan over, the United States is enhancing its human rights diplomacy together with its anti-terrorism diplomacy. Truly efficient, comprehensive international cooperation on anti-terrorism is still far away.展开更多
The relation between Anti-terrorism and human rights Protection is rather complicated. Based on the practices in Africa, this article analyses the conflicts and contradictions between the two. While countering terrori...The relation between Anti-terrorism and human rights Protection is rather complicated. Based on the practices in Africa, this article analyses the conflicts and contradictions between the two. While countering terrorism, governments have to take the duty of human rights protection as well. Rights are of key importance in preventing and countering terrorism. Integrating human rights construction into antiterrorism mechanism is rather helpful in eliminating various moods of dissatisfaction which are easy to breed terrorism.展开更多
Social media forums have emerged as the most popular form of communication in the modern technology era,allowing people to discuss and express their opinions.This increases the amount of material being shared on socia...Social media forums have emerged as the most popular form of communication in the modern technology era,allowing people to discuss and express their opinions.This increases the amount of material being shared on social media sites.There is a wealth of information about the threat that may be found in such open data sources.The security of already-deployed software and systems relies heavily on the timely detection of newly-emerging threats to their safety that can be gleaned from such information.Despite the fact that several models for detecting cybersecurity events have been presented,it remains challenging to extract security events from the vast amounts of unstructured text present in public data sources.The majority of the currently available methods concentrate on detecting events that have a high number of dimensions.This is because the unstructured text in open data sources typically contains a large number of dimensions.However,to react to attacks quicker than they can be launched,security analysts and information technology operators need to be aware of critical security events as soon as possible,regardless of how often they are reported.This research provides a unique event detection method that can swiftly identify significant security events from open forums such as Twitter.The proposed work identified new threats and the revival of an attack or related event,independent of the volume of mentions relating to those events on Twitter.In this research work,deep learning has been used to extract predictive features from open-source text.The proposed model is composed of data collection,data transformation,feature extraction using deep learning,Latent Dirichlet Allocation(LDA)based medium-level cyber-event detection and final Google Trends-based high-level cyber-event detection.The proposed technique has been evaluated on numerous datasets.Experiment results show that the proposed method outperforms existing methods in detecting cyber events by giving 95.96% accuracy.展开更多
This paper addressed the current state of police officers’ capabilities, skills, and their readiness to deal with the developments of cybercrime. This study discussed definition of cybercrime, cybercrime categories a...This paper addressed the current state of police officers’ capabilities, skills, and their readiness to deal with the developments of cybercrime. This study discussed definition of cybercrime, cybercrime categories as well as comparison between traditional criminal techniques and cybercrime. As the abilities and skills required for detectives to investigate cybercrime have been discussed. Additionally, literature review and related work, was addressed challenges role of the police in combating cybercrime and facing cybercrime policing. We proposed the main tool in the study which is “Checklist of essential skills for a cybercrime investigator”. Thus, to gain the ability to Identify technical and practical requirements in terms of skills, programs, and equipment to achieve effective and professional results in fight cybercrimes.展开更多
文摘The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual users and organizations from the online threats of data poaching and pilferage.The widespread usage of Information Technology(IT)and IT Enable Services(ITES)reinforces securitymeasures.The constantly evolving cyber threats are a topic that is generating a lot of discussion.In this league,the present article enlists a broad perspective on how cybercrime is developing in KSA at present and also takes a look at some of the most significant attacks that have taken place in the region.The existing legislative framework and measures in the KSA are geared toward deterring criminal activity online.Different competency models have been devised to address the necessary cybercrime competencies in this context.The research specialists in this domain can benefit more by developing a master competency level for achieving optimum security.To address this research query,the present assessment uses the Fuzzy Decision-Making Trial and Evaluation Laboratory(Fuzzy-DMTAEL),Fuzzy Analytic Hierarchy Process(F.AHP),and Fuzzy TOPSIS methodology to achieve segment-wise competency development in cyber security policy.The similarities and differences between the three methods are also discussed.This cybersecurity analysis determined that the National Cyber Security Centre got the highest priority.The study concludes by perusing the challenges that still need to be examined and resolved in effectuating more credible and efficacious online security mechanisms to offer amoreempowered ITES-driven economy for SaudiArabia.Moreover,cybersecurity specialists and policymakers need to collate their efforts to protect the country’s digital assets in the era of overt and covert cyber warfare.
文摘Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.
文摘The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.
文摘This paper studies cyber risk management by integrating contextual log analysis with User and Entity Behavior Analytics (UEBA). Leveraging Python scripting and PostgreSQL database management, the solution enriches log data with contextual and behavioral information from Linux system logs and semantic datasets. By incorporating Common Vulnerability Scoring System (CVSS) metrics and customized risk scoring algorithms, the system calculates Insider Threat scores to identify potential security breaches. The integration of contextual log analysis and UEBA [1] offers a proactive defense against insider threats, reducing false positives and prioritizing high-risk alerts.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
文摘This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen or undermine infrastructural functions and organize the networks. In addition, the essay delves into AI’s role in Cyber security software development and the need for AI-resilient strategies that could anticipate and thwart AI-created vulnerabilities. The document also touched on the socioeconomic ramifications of the emergence of AI in Cyber security as well. Looking into AI and security literature, the report outlines benefits including made threat detection precision, extended security ops efficiency, and preventive security tasks. At the same time, it emphasizes the positive side of AI, but it also shows potential limitations such as data bias, lack of interpretability, ethical concerns, and security flaws. The work similarly focuses on the characterized of misuse and sophisticated cyberattacks. The research suggests ways to diminish AI-generating maleficence which comprise ethical AI development, robust safety measures and constant audits and updates. With regard to the AI application in Cyber security, there are both pros and cons in terms of socio-economic issues, for example, job displacement, economic growth and the change in the required workforce skills.
文摘Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.
文摘Cyber security addresses the protection of information systems in cyberspace. These systems face multiple attacks on a daily basis, with the level of complication getting increasingly challenging. Despite the existence of multiple solutions, attackers are still quite successful at identifying vulnerabilities to exploit. This is why cyber deception is increasingly being used to divert attackers’ attention and, therefore, enhance the security of information systems. To be effective, deception environments need fake data. This is where Natural Language (NLP) Processing comes in. Many cyber security models have used NLP for vulnerability detection in information systems, email classification, fake citation detection, and many others. Although it is used for text generation, existing models seem to be unsuitable for data generation in a deception environment. Our goal is to use text generation in NLP to generate data in the deception context that will be used to build multi-level deception in information systems. Our model consists of three (3) components, including the connection component, the deception component, composed of several states in which an attacker may be, depending on whether he is malicious or not, and the text generation component. The text generation component considers as input the real data of the information system and allows the production of several texts as output, which are usable at different deception levels.
基金funded by the Double Top-Class Innovation Research Project in Cyberspace Security Enforcement Technology of People’s Public Security University of China(No.2023SYL07).
文摘In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in combating cyber attacks.Named Entity Recognition(NER),as a crucial component of text mining,can structure complex CTI text and aid cybersecurity professionals in effectively countering threats.However,current CTI NER research has mainly focused on studying English CTI.In the limited studies conducted on Chinese text,existing models have shown poor performance.To fully utilize the power of Chinese pre-trained language models(PLMs)and conquer the problem of lengthy infrequent English words mixing in the Chinese CTIs,we propose a residual dilated convolutional neural network(RDCNN)with a conditional random field(CRF)based on a robustly optimized bidirectional encoder representation from transformers pre-training approach with whole word masking(RoBERTa-wwm),abbreviated as RoBERTa-wwm-RDCNN-CRF.We are the first to experiment on the relevant open source dataset and achieve an F1-score of 82.35%,which exceeds the common baseline model bidirectional encoder representation from transformers(BERT)-bidirectional long short-term memory(BiLSTM)-CRF in this field by about 19.52%and exceeds the current state-of-the-art model,BERT-RDCNN-CRF,by about 3.53%.In addition,we conducted an ablation study on the encoder part of the model to verify the effectiveness of the proposed model and an in-depth investigation of the PLMs and encoder part of the model to verify the effectiveness of the proposed model.The RoBERTa-wwm-RDCNN-CRF model,the shared pre-processing,and augmentation methods can serve the subsequent fundamental tasks such as cybersecurity information extraction and knowledge graph construction,contributing to important applications in downstream tasks such as intrusion detection and advanced persistent threat(APT)attack detection.
文摘Since taking office, the Trump administration's anti-terrorism policy has become increasingly clear. Its anti-terrorism measures and its internal and external anti-terrorism policies have introduced new features that are distinct from those of the Obama administration. These include linking terrorism to Islam, violating traditional political correctness in order to enhance homeland security, sending large-scale troops to the Middle East, and delegating more authority to the US Defense Department and the Armed Forces. Trump's anti-terrorism policies have made obvious progress both at home and abroad. Along with the adjustment of its national security strategy, the status of the anti-terrorism policy in Trump's national security strategy and national defense strategy will decline.However, for the foreseeable future, anti-terrorism will remain an important issue for the Trump Administration, and in some circumstances,the investment for it may increase.
文摘The September 11 event upset Japan’s diplomatic agenda and ushered in a strategic restructuring with the focus on anti-terrorism and the top priority given to ties with Washington. Its new diplomacy against terror stresses three aspects: policy towards Washington for ensuring strategic center
基金supported by the National Natural Science Foundation of China(61973331,61973257)the National Key Research and Development Plan Programs of China(2018YFB0106101).
文摘This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator faults.Based on the fractional Lyapunov stability theory and the finite-time stability theory,a fractional-order nonsingular fast terminal sliding mode(FONFTSM)control law is proposed to promote the tracking and fault tolerance performance of the considered system.Meanwhile,the adaptive fractional-order update laws are designed to cope with the unknown upper bounds of the unknown actuator faults and external disturbances.Furthermore,the finite-time stability of the closed-loop system is proved.Finally,comparison simulation results are also provided to show the validity and the advantages of the proposed techniques.
基金supported by China’s National Key R&D Program,No.2019QY1404the National Natural Science Foundation of China,Grant No.U20A20161,U1836103the Basic Strengthening Program Project,No.2019-JCJQ-ZD-113.
文摘The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text.
文摘This article briefly outlines how anti-terrorism struggles became linked and their relationship thereafter with human rights issues in international political life. With equal relevance and value to human development, anti-terrorism efforts and human rights protection are themselves not mutually exclusive or contradictory. Their conflict in everyday life has sometimes resulted from the fact that they are both manipulated in the service of certain political ends. What's more, there has never been p erfect human rights protection in the world so far, which often makes human rights problems an easy charge against almost every government. No anti-terrorist activities in either the US or Europe have been really constrained by the idea of human rights no matter how beautiful their rhetoric has been. Now both human rights and anti-terrorism have been made into a tool of diplomacy and international politics. With the war in Afghanistan over, the United States is enhancing its human rights diplomacy together with its anti-terrorism diplomacy. Truly efficient, comprehensive international cooperation on anti-terrorism is still far away.
文摘The relation between Anti-terrorism and human rights Protection is rather complicated. Based on the practices in Africa, this article analyses the conflicts and contradictions between the two. While countering terrorism, governments have to take the duty of human rights protection as well. Rights are of key importance in preventing and countering terrorism. Integrating human rights construction into antiterrorism mechanism is rather helpful in eliminating various moods of dissatisfaction which are easy to breed terrorism.
基金funded by a grant from the Center of Excellence in Information Assurance(CoEIA),KSU.
文摘Social media forums have emerged as the most popular form of communication in the modern technology era,allowing people to discuss and express their opinions.This increases the amount of material being shared on social media sites.There is a wealth of information about the threat that may be found in such open data sources.The security of already-deployed software and systems relies heavily on the timely detection of newly-emerging threats to their safety that can be gleaned from such information.Despite the fact that several models for detecting cybersecurity events have been presented,it remains challenging to extract security events from the vast amounts of unstructured text present in public data sources.The majority of the currently available methods concentrate on detecting events that have a high number of dimensions.This is because the unstructured text in open data sources typically contains a large number of dimensions.However,to react to attacks quicker than they can be launched,security analysts and information technology operators need to be aware of critical security events as soon as possible,regardless of how often they are reported.This research provides a unique event detection method that can swiftly identify significant security events from open forums such as Twitter.The proposed work identified new threats and the revival of an attack or related event,independent of the volume of mentions relating to those events on Twitter.In this research work,deep learning has been used to extract predictive features from open-source text.The proposed model is composed of data collection,data transformation,feature extraction using deep learning,Latent Dirichlet Allocation(LDA)based medium-level cyber-event detection and final Google Trends-based high-level cyber-event detection.The proposed technique has been evaluated on numerous datasets.Experiment results show that the proposed method outperforms existing methods in detecting cyber events by giving 95.96% accuracy.
文摘This paper addressed the current state of police officers’ capabilities, skills, and their readiness to deal with the developments of cybercrime. This study discussed definition of cybercrime, cybercrime categories as well as comparison between traditional criminal techniques and cybercrime. As the abilities and skills required for detectives to investigate cybercrime have been discussed. Additionally, literature review and related work, was addressed challenges role of the police in combating cybercrime and facing cybercrime policing. We proposed the main tool in the study which is “Checklist of essential skills for a cybercrime investigator”. Thus, to gain the ability to Identify technical and practical requirements in terms of skills, programs, and equipment to achieve effective and professional results in fight cybercrimes.