State-of-the-art technologies such as the Internet of Things(IoT),cloud computing(CC),big data analytics(BDA),and artificial intelligence(AI)have greatly stimulated the development of smart manufacturing.An important ...State-of-the-art technologies such as the Internet of Things(IoT),cloud computing(CC),big data analytics(BDA),and artificial intelligence(AI)have greatly stimulated the development of smart manufacturing.An important prerequisite for smart manufacturing is cyber-physical integration,which is increasingly being embraced by manufacturers.As the preferred means of such integration,cyber-physical systems(CPS)and digital twins(DTs)have gained extensive attention from researchers and practitioners in industry.With feedback loops in which physical processes affect cyber parts and vice versa,CPS and DTs can endow manufacturing systems with greater efficiency,resilience,and intelligence.CPS and DTs share the same essential concepts of an intensive cyber-physical connection,real-time interaction,organization integration,and in-depth collaboration.However,CPS and DTs are not identical from many perspectives,including their origin,development,engineering practices,cyber-physical mapping,and core elements.In order to highlight the differences and correlation between them,this paper reviews and analyzes CPS and DTs from multiple perspectives.展开更多
Smart distribution network will achieve the optimal operation of the distribution network, provide high-quality and reliable power, guarantee the development of modern social economy. The deep integration of cyber sys...Smart distribution network will achieve the optimal operation of the distribution network, provide high-quality and reliable power, guarantee the development of modern social economy. The deep integration of cyber system and power physical system is the key to smart distribution network. The emergence of cyber-physical system (CPS) provides a new way to solve this problem, the cyber-physical model for smart distribution grid becomes an urgent problem to be solved. In this paper, the content and method of cyber-physical model for smart distribution grid are analyzed by combining with the coupling of information flow and power flow of smart distribution network from the perspective of cyber-physical model. At last, taking 110 kV typical substation as an example, the coupling mechanism and function of power flow and information flow is studied.展开更多
This paper aims to identify and clarify the cyber security risks and their interaction with the power system in Smart Grid. The SCADA system and other communication networks interact with the power system on a real ti...This paper aims to identify and clarify the cyber security risks and their interaction with the power system in Smart Grid. The SCADA system and other communication networks interact with the power system on a real time basis, so it is important to understand the interaction between two layers to protect the power system from potential cyber threats. This paper has shown the risks of the open architecture SCADA in a quantitative method and proposed effective security measures through case studies.展开更多
One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks ba...One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions.展开更多
Considered as a top priority of industrial devel- opment, Industry 4.0 (or Industrie 4.0 as the German ver- sion) has being highlighted as the pursuit of both academy and practice in companies. In this paper, based ...Considered as a top priority of industrial devel- opment, Industry 4.0 (or Industrie 4.0 as the German ver- sion) has being highlighted as the pursuit of both academy and practice in companies. In this paper, based on the review of state of art and also the state of practice in dif- ferent countries, shortcomings have been revealed as the lacking of applicable framework for the implementation of Industrie 4.0. Therefore, in order to shed some light on the knowledge of the details, a reference architecture is developed, where four perspectives namely manufacturing process, devices, software and engineering have been highlighted. Moreover, with a view on the importance of Cyber-Physical systems, the structure of Cyber-Physical System are established for the in-depth analysis. Further cases with the usage of Cyber-Physical System are also arranged, which attempts to provide some implications to match the theoretical findings together with the experience of companies. In general, results of this paper could be useful for the extending on the theoretical understanding of Industrie 4.0. Additionally, applied framework and proto- types based on the usage of Cyber-Physical Systems are also potential to help companies to design the layout of sensor nets, to achieve coordination and controlling of smart machines, to realize synchronous production with systematic structure, and to extend the usage of information and communication technologies to the maintenance scheduling.展开更多
The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create ...The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.展开更多
Conventional power systems are being developed into grid cyber physical systems(GCPS) with widespread application of communication, computer, and control technologies. In this article, we propose a quantitative analys...Conventional power systems are being developed into grid cyber physical systems(GCPS) with widespread application of communication, computer, and control technologies. In this article, we propose a quantitative analysis method for a GCPS. Based on this, we discuss the relationship between cyberspace and physical space, especially the computational similarity within the GCPS both in undirected and directed bipartite networks. We then propose a model for evaluating the fusion of the three most important factors: information, communication, and security. We then present the concept of the fusion evaluation cubic for the GCPS quantitative analysis model. Through these models, we can determine whether a more realistic state of the GCPS can be found by enhancing the fusion between cyberspace and physical space. Finally, we conclude that the degree of fusion between the two spaces is very important, not only considering the performance of the whole business process, but also considering security.展开更多
Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is su...Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create serious technical, economical, social and control problems in power network operations. In contrast to the traditional cyber attack minimization techniques, this paper proposes a recursive systematic convolutional(RSC) code and Kalman filter(KF) based method in the context of smart grids.Specifically, the proposed RSC code is used to add redundancy in the microgrid states, and the log maximum a-posterior is used to recover the state information, which is affected by random noises and cyber attacks. Once the estimated states are obtained by KF algorithm, a semidefinite programming based optimal feedback controller is proposed to regulate the system states, so that the power system can operate properly. Test results show that the proposed approach can accurately mitigate the cyber attacks and properly estimate and control the system states.展开更多
Vehicular Networks (VANET) are the largest real-life paradigm of ad hoc networks which aim to ensure road safety and enhance drivers’ comfort. In VANET, the vehicles communicate or collaborate with each other and wit...Vehicular Networks (VANET) are the largest real-life paradigm of ad hoc networks which aim to ensure road safety and enhance drivers’ comfort. In VANET, the vehicles communicate or collaborate with each other and with adjacent infrastructure by exchanging significant messages, such as road accident warnings, steep-curve ahead warnings or traffic jam warnings. However, this communication and other assets involved are subject to major threats and provide numerous opportunities for attackers to launch several attacks and compromise security and privacy of vehicular users. This paper reviews the cyber security in VANET and proposes an asset-based approach for VANET security. Firstly, it identifies relevant assets in VANET. Secondly, it provides a detailed taxonomy of vulnerabilities and threats on these assets, and, lastly, it classifies the possible attacks in VANET and critically evaluates them.展开更多
with the development of science and technology, smart home systems require better, faster to meet the needs of human. In order to achieve this goal, the human-machine-items all need to interact each other with underst...with the development of science and technology, smart home systems require better, faster to meet the needs of human. In order to achieve this goal, the human-machine-items all need to interact each other with understand, efficient and speedy. Cps could unify combination with the human-machine-items; realize the interaction between the physical nformation and the cyber world. However, information interaction and the control task needs to be completed in a valid time. Therefore, the transform delay control strategy becomes more and more important. This paper analysis Markov delay control strategy for smart home systems, which might help the system decrease the transmission delay.展开更多
The technological evolution emerges a unified (Industrial) Internet of Things network, where loosely coupled smart manufacturing devices build smart manufacturing systems and enable comprehensive collaboration possibi...The technological evolution emerges a unified (Industrial) Internet of Things network, where loosely coupled smart manufacturing devices build smart manufacturing systems and enable comprehensive collaboration possibilities that increase the dynamic and volatility of their ecosystems. On the one hand, this evolution generates a huge field for exploitation, but on the other hand also increases complexity including new challenges and requirements demanding for new approaches in several issues. One challenge is the analysis of such systems that generate huge amounts of (continuously generated) data, potentially containing valuable information useful for several use cases, such as knowledge generation, key performance indicator (KPI) optimization, diagnosis, predication, feedback to design or decision support. This work presents a review of Big Data analysis in smart manufacturing systems. It includes the status quo in research, innovation and development, next challenges, and a comprehensive list of potential use cases and exploitation possibilities.展开更多
为充分提高配电系统调度和控制的灵活性,建设和落实以智能化和主动化为导向,以信息通信技术为支撑的信息物理主动配电系统(cyber-physical active distribution system,CPADS)显得至关重要。基于此,提出计及混合通信组网的CPADS协调规...为充分提高配电系统调度和控制的灵活性,建设和落实以智能化和主动化为导向,以信息通信技术为支撑的信息物理主动配电系统(cyber-physical active distribution system,CPADS)显得至关重要。基于此,提出计及混合通信组网的CPADS协调规划方法。首先,将信息域混合通信组网策略和物理域主动配电系统时空运行策略有机统一,建立旨在最小化投资–运行总成本的CPADS协调规划模型。具体而言,综合考虑主动控制设备投资成本、有线/无线组网投资成本、网损成本、弃光成本、失负荷成本、电压偏差优化成本等建立多维度投资运行目标函数。然后,综合考虑物理域主动控制设备的选址或选型、信息域有线组网和无线组网的差异性构建投资约束;充分考虑设备主动控制策略、电压偏差等构建CPADS时空运行约束。最后,综合考虑场景概率分布不确定性置信度集合的1-范数和∞-范数约束,将所提规划模型重构为一个数据驱动下的分布鲁棒协调规划框架,并利用列与约束生成(columnandconstraintgeneration,CCG)算法迭代求解。展开更多
The distributed hierarchical control based on multi-agent system(MAS) is the main control method of micro-grids.By allowing more flexible interactions between computing components and their physical environments,cyber...The distributed hierarchical control based on multi-agent system(MAS) is the main control method of micro-grids.By allowing more flexible interactions between computing components and their physical environments,cyber physical system(CPS) presents a new approach for the distributed hierarchical engineering system,with micro-grids included.The object of this paper is to integrate the CPS concept with MAS technology and propose a new control framework for micro-grids.With the analysis of the operating mode and control method of micro-grids,the cyber physical control concepts of ontologybased semantic agent are discussed.Then an MAS-based architecture of cyber physical micro-grid system and an intelligent electronic device(IED) function structure are proposed.Finally,in order to operate and test the cyber physical micro-grid concept,an integrated simulation model is presented.展开更多
基金This work is financially supported by the National Key Research and Development Program of China(2016YFB1101700)the National Natural Science Foundation of China(51875030)the Academic Excellence Foundation of BUAA for PhD Students.
文摘State-of-the-art technologies such as the Internet of Things(IoT),cloud computing(CC),big data analytics(BDA),and artificial intelligence(AI)have greatly stimulated the development of smart manufacturing.An important prerequisite for smart manufacturing is cyber-physical integration,which is increasingly being embraced by manufacturers.As the preferred means of such integration,cyber-physical systems(CPS)and digital twins(DTs)have gained extensive attention from researchers and practitioners in industry.With feedback loops in which physical processes affect cyber parts and vice versa,CPS and DTs can endow manufacturing systems with greater efficiency,resilience,and intelligence.CPS and DTs share the same essential concepts of an intensive cyber-physical connection,real-time interaction,organization integration,and in-depth collaboration.However,CPS and DTs are not identical from many perspectives,including their origin,development,engineering practices,cyber-physical mapping,and core elements.In order to highlight the differences and correlation between them,this paper reviews and analyzes CPS and DTs from multiple perspectives.
文摘Smart distribution network will achieve the optimal operation of the distribution network, provide high-quality and reliable power, guarantee the development of modern social economy. The deep integration of cyber system and power physical system is the key to smart distribution network. The emergence of cyber-physical system (CPS) provides a new way to solve this problem, the cyber-physical model for smart distribution grid becomes an urgent problem to be solved. In this paper, the content and method of cyber-physical model for smart distribution grid are analyzed by combining with the coupling of information flow and power flow of smart distribution network from the perspective of cyber-physical model. At last, taking 110 kV typical substation as an example, the coupling mechanism and function of power flow and information flow is studied.
文摘This paper aims to identify and clarify the cyber security risks and their interaction with the power system in Smart Grid. The SCADA system and other communication networks interact with the power system on a real time basis, so it is important to understand the interaction between two layers to protect the power system from potential cyber threats. This paper has shown the risks of the open architecture SCADA in a quantitative method and proposed effective security measures through case studies.
文摘One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions.
基金Projects(52074085,U21A20117,U21A20475)supported by the National Natural Science Foundation of ChinaProject(N2004010)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Considered as a top priority of industrial devel- opment, Industry 4.0 (or Industrie 4.0 as the German ver- sion) has being highlighted as the pursuit of both academy and practice in companies. In this paper, based on the review of state of art and also the state of practice in dif- ferent countries, shortcomings have been revealed as the lacking of applicable framework for the implementation of Industrie 4.0. Therefore, in order to shed some light on the knowledge of the details, a reference architecture is developed, where four perspectives namely manufacturing process, devices, software and engineering have been highlighted. Moreover, with a view on the importance of Cyber-Physical systems, the structure of Cyber-Physical System are established for the in-depth analysis. Further cases with the usage of Cyber-Physical System are also arranged, which attempts to provide some implications to match the theoretical findings together with the experience of companies. In general, results of this paper could be useful for the extending on the theoretical understanding of Industrie 4.0. Additionally, applied framework and proto- types based on the usage of Cyber-Physical Systems are also potential to help companies to design the layout of sensor nets, to achieve coordination and controlling of smart machines, to realize synchronous production with systematic structure, and to extend the usage of information and communication technologies to the maintenance scheduling.
基金support for this work from UK EPSRC,through the Knowledge-DrivenConfigurable Manufacturing (KDCM) research project under the Flexible and Reconfigurable Manufacturing Initiativefrom Innovate UK on the Direct Digital Deployment project, and from ARTEMIS on the Arrowhead project
文摘The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.
基金supported by The National Key Research and Development Program of China (Title: Basic Theories and Methods of Analysis and Control of the Cyber Physical Systems for Power Grid (Basic Research Class 2017YFB0903000))the State Grid Science and Technology Project (Title: Research on Architecture and Several Key Technologies for Grid Cyber Physical System,No.SGRIXTKJ[2016]454)
文摘Conventional power systems are being developed into grid cyber physical systems(GCPS) with widespread application of communication, computer, and control technologies. In this article, we propose a quantitative analysis method for a GCPS. Based on this, we discuss the relationship between cyberspace and physical space, especially the computational similarity within the GCPS both in undirected and directed bipartite networks. We then propose a model for evaluating the fusion of the three most important factors: information, communication, and security. We then present the concept of the fusion evaluation cubic for the GCPS quantitative analysis model. Through these models, we can determine whether a more realistic state of the GCPS can be found by enhancing the fusion between cyberspace and physical space. Finally, we conclude that the degree of fusion between the two spaces is very important, not only considering the performance of the whole business process, but also considering security.
文摘Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create serious technical, economical, social and control problems in power network operations. In contrast to the traditional cyber attack minimization techniques, this paper proposes a recursive systematic convolutional(RSC) code and Kalman filter(KF) based method in the context of smart grids.Specifically, the proposed RSC code is used to add redundancy in the microgrid states, and the log maximum a-posterior is used to recover the state information, which is affected by random noises and cyber attacks. Once the estimated states are obtained by KF algorithm, a semidefinite programming based optimal feedback controller is proposed to regulate the system states, so that the power system can operate properly. Test results show that the proposed approach can accurately mitigate the cyber attacks and properly estimate and control the system states.
文摘Vehicular Networks (VANET) are the largest real-life paradigm of ad hoc networks which aim to ensure road safety and enhance drivers’ comfort. In VANET, the vehicles communicate or collaborate with each other and with adjacent infrastructure by exchanging significant messages, such as road accident warnings, steep-curve ahead warnings or traffic jam warnings. However, this communication and other assets involved are subject to major threats and provide numerous opportunities for attackers to launch several attacks and compromise security and privacy of vehicular users. This paper reviews the cyber security in VANET and proposes an asset-based approach for VANET security. Firstly, it identifies relevant assets in VANET. Secondly, it provides a detailed taxonomy of vulnerabilities and threats on these assets, and, lastly, it classifies the possible attacks in VANET and critically evaluates them.
文摘with the development of science and technology, smart home systems require better, faster to meet the needs of human. In order to achieve this goal, the human-machine-items all need to interact each other with understand, efficient and speedy. Cps could unify combination with the human-machine-items; realize the interaction between the physical nformation and the cyber world. However, information interaction and the control task needs to be completed in a valid time. Therefore, the transform delay control strategy becomes more and more important. This paper analysis Markov delay control strategy for smart home systems, which might help the system decrease the transmission delay.
文摘The technological evolution emerges a unified (Industrial) Internet of Things network, where loosely coupled smart manufacturing devices build smart manufacturing systems and enable comprehensive collaboration possibilities that increase the dynamic and volatility of their ecosystems. On the one hand, this evolution generates a huge field for exploitation, but on the other hand also increases complexity including new challenges and requirements demanding for new approaches in several issues. One challenge is the analysis of such systems that generate huge amounts of (continuously generated) data, potentially containing valuable information useful for several use cases, such as knowledge generation, key performance indicator (KPI) optimization, diagnosis, predication, feedback to design or decision support. This work presents a review of Big Data analysis in smart manufacturing systems. It includes the status quo in research, innovation and development, next challenges, and a comprehensive list of potential use cases and exploitation possibilities.
文摘为充分提高配电系统调度和控制的灵活性,建设和落实以智能化和主动化为导向,以信息通信技术为支撑的信息物理主动配电系统(cyber-physical active distribution system,CPADS)显得至关重要。基于此,提出计及混合通信组网的CPADS协调规划方法。首先,将信息域混合通信组网策略和物理域主动配电系统时空运行策略有机统一,建立旨在最小化投资–运行总成本的CPADS协调规划模型。具体而言,综合考虑主动控制设备投资成本、有线/无线组网投资成本、网损成本、弃光成本、失负荷成本、电压偏差优化成本等建立多维度投资运行目标函数。然后,综合考虑物理域主动控制设备的选址或选型、信息域有线组网和无线组网的差异性构建投资约束;充分考虑设备主动控制策略、电压偏差等构建CPADS时空运行约束。最后,综合考虑场景概率分布不确定性置信度集合的1-范数和∞-范数约束,将所提规划模型重构为一个数据驱动下的分布鲁棒协调规划框架,并利用列与约束生成(columnandconstraintgeneration,CCG)算法迭代求解。
基金National Natural Science Foundation of China(No.51477097)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,China(No.LAPS13009)National High-Technology Research and Development Program of China(863 Program)(No.2013BAA01B04)
文摘The distributed hierarchical control based on multi-agent system(MAS) is the main control method of micro-grids.By allowing more flexible interactions between computing components and their physical environments,cyber physical system(CPS) presents a new approach for the distributed hierarchical engineering system,with micro-grids included.The object of this paper is to integrate the CPS concept with MAS technology and propose a new control framework for micro-grids.With the analysis of the operating mode and control method of micro-grids,the cyber physical control concepts of ontologybased semantic agent are discussed.Then an MAS-based architecture of cyber physical micro-grid system and an intelligent electronic device(IED) function structure are proposed.Finally,in order to operate and test the cyber physical micro-grid concept,an integrated simulation model is presented.