Spinel LiMn204 was synthesized by glycine-nitrate method and coated with CaCO3 in order to enhance the electrochemical performance at room temperature (25℃) and 55℃. The uncoated and CaCO3-coated LiMn204 materials...Spinel LiMn204 was synthesized by glycine-nitrate method and coated with CaCO3 in order to enhance the electrochemical performance at room temperature (25℃) and 55℃. The uncoated and CaCO3-coated LiMn204 materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. XRD and SEM results indicated that CaCO3 particles encapsulated the surface of the LiMn204 without causing any structural change. The charge-discharge tests showed that the specific discharge capacity fade of pristine electrode at 25 and 55℃ were 25.5% and 52%, respectively. However, surface modified cathode shows 7.4% and 29.5% loss compared to initial specific discharge capacity at 70th cycle for 25 and 55~C, respectively. The improvement of electrochemical performance is attributed to suppression of Mn2+ dissolution into electrolyte via CaCO3 layer.展开更多
基金supported by the Erciyes University Research Found under the code of FBA-08-439
文摘Spinel LiMn204 was synthesized by glycine-nitrate method and coated with CaCO3 in order to enhance the electrochemical performance at room temperature (25℃) and 55℃. The uncoated and CaCO3-coated LiMn204 materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. XRD and SEM results indicated that CaCO3 particles encapsulated the surface of the LiMn204 without causing any structural change. The charge-discharge tests showed that the specific discharge capacity fade of pristine electrode at 25 and 55℃ were 25.5% and 52%, respectively. However, surface modified cathode shows 7.4% and 29.5% loss compared to initial specific discharge capacity at 70th cycle for 25 and 55~C, respectively. The improvement of electrochemical performance is attributed to suppression of Mn2+ dissolution into electrolyte via CaCO3 layer.