期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fault Feature Extraction of Rolling Bearing Based on an Improved Cyclical Spectrum Density Method 被引量:1
1
作者 LI Min YANG Jianhong WANG Xiaojing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1240-1247,共8页
The traditional cyclical spectrum density(CSD) method is widely used to analyze the fault signals of rolling bearing. All modulation frequencies are demodulated in the cyclic frequency spectrum. Consequently, recogn... The traditional cyclical spectrum density(CSD) method is widely used to analyze the fault signals of rolling bearing. All modulation frequencies are demodulated in the cyclic frequency spectrum. Consequently, recognizing bearing fault type is difficult. Therefore, a new CSD method based on kurtosis(CSDK) is proposed. The kurtosis value of each cyclic frequency is used to measure the modulation capability of cyclic frequency. When the kurtosis value is large, the modulation capability is strong. Thus, the kurtosis value is regarded as the weight coefficient to accumulate all cyclic frequencies to extract fault features. Compared with the traditional method, CSDK can reduce the interference of harmonic frequency in fault frequency, which makes fault characteristics distinct from background noise. To validate the effectiveness of the method, experiments are performed on the simulation signal, the fault signal of the bearing outer race in the test bed, and the signal gathered from the bearing of the blast furnace belt cylinder. Experimental results show that the CSDK is better than the resonance demodulation method and the CSD in extracting fault features and recognizing degradation trends. The proposed method provides a new solution to fault diagnosis in bearings. 展开更多
关键词 CYCLOSTATIONARY cyclical spectrum density rolling bearing fault diagnosis
下载PDF
SEMI-SUPERVISED RADIO TRANSMITTER CLASSIFICATION BASED ON ELASTIC SPARSITY REGULARIZED SVM 被引量:2
2
作者 Hu Guyu Gong Yong +2 位作者 Chen Yande Pan Zhisong Deng Zhantao 《Journal of Electronics(China)》 2012年第6期501-508,共8页
Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which... Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which can be obtained much easier, a novel semi-supervised classification method named Elastic Sparsity Regularized Support Vector Machine (ESRSVM) is proposed for radio transmitter classification. ESRSVM first constructs an elastic-net graph over data samples to capture the robust and natural discriminating information and then incorporate the information into the manifold learning framework by an elastic sparsity regularization term. Experimental results on 10 GMSK modulated Automatic Identification System radios and 15 FM walkie-talkie radios show that ESRSVM achieves obviously better performance than KNN and SVM, which use only labeled samples for classification, and also outperforms semi-supervised classifier LapSVM based on manifold regularization. 展开更多
关键词 Radio transmitter recognition cyclic spectrum density Semi-supervised classification Elastic Sparsity Regularized Support Vector Machine (ESRSVM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部