It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has...It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph(DAG). However, steady directed cyclic graphs(DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph(S-DUCG), and thus defines a new Bayesian Network with steady DCGs. The so-called single-valued means that only the causes of the true state of a variable are specified, while the false state is the complement of the true state.展开更多
A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of ...A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of order n. Furthermore, we determine the first three unicycles and bicyclic, C_4-free graphs whose spectral radius of the signless Laplacian is maximal. Similar results are obtained for the(combinatorial)展开更多
We provide some exact formulas for the projective dimension and regularity of edge ideals associated to some vertex-weighted oriented cyclic graphs with a common vertex or edge.These formulas axe functions in the weig...We provide some exact formulas for the projective dimension and regularity of edge ideals associated to some vertex-weighted oriented cyclic graphs with a common vertex or edge.These formulas axe functions in the weight of the vertices,and the numbers of edges and cycles.Some examples show that these formulas are related to direction selection and the assumption that w(x)≥2 for any vertex x cannot be dropped.展开更多
We prove that a CP matrix A having cyclic graph has exactly two minimal rank 1 factorization if det M(A) > 0 and has exactly one minimal rank 1 factorization if detM(A) = 0.
Let G be a simple graph. The cyclic bandwidth sum problem is to determine a labeling of graph G in a cycle such that the total length of edges is as small as possible. In this paper, some upper and lower bound...Let G be a simple graph. The cyclic bandwidth sum problem is to determine a labeling of graph G in a cycle such that the total length of edges is as small as possible. In this paper, some upper and lower bounds on cyclic bandwidth sum of graphs are studied.展开更多
A total coloring of a graph G is a functionsuch that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. A k-interval is a set of k consecutive integers. A cyclically interval total ...A total coloring of a graph G is a functionsuch that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. A k-interval is a set of k consecutive integers. A cyclically interval total t-coloring of a graph G is a total coloring a of G with colors 1,2,...,t, such that at least one vertex or edge of G is colored by i,i=1,2,...,t, and for any, the set is a -interval, or is a -interval, where dG(x) is the degree of the vertex x in G. In this paper, we study the cyclically interval total colorings of cycles and middle graphs of cycles.展开更多
All graphs are finite simple undirected and of no isolated vertices in this paper. Using the theory of coset graphs and permutation groups, it is completed that a classification of locally transitive graphs admitting ...All graphs are finite simple undirected and of no isolated vertices in this paper. Using the theory of coset graphs and permutation groups, it is completed that a classification of locally transitive graphs admitting a non-Abelian group with cyclic Sylow subgroups. They are either the union of the family of arc-transitive graphs, or the union of the family of bipartite edge-transitive graphs.展开更多
Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind o...Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind of cyclic reconfigurable flow shops are proposed for the new manufacturing paradigm-reconfigurable manufacturing system. The cyclic reconfigurable flow shop is modeled as a timed event graph. The optimal configuration is defined as the one under which the cyclic reconfigurable flow shop functions with the minimum cycle time and the minimum number of pallets. The optimal configuration, the minimum cycle time and the minimum number of pallets can be obtained in two steps.展开更多
An orthogonal double cover (ODC) of a graph H is a collection of subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC G of H is cyc...An orthogonal double cover (ODC) of a graph H is a collection of subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC G of H is cyclic (CODC) if the cyclic group of order is a subgroup of the automorphism group of G. In this paper, we introduce a general orthogonal labelling for CODC of circulant graphs and construct CODC by certain classes of graphs such as complete bipartite graph, the union of the co-cycles graph with a star, the center vertex of which, belongs to the co-cycles graph and graphs that are connected by a one vertex.展开更多
Tian and Meng in [Y. Tian and J. Meng, λc -Optimally half vertex transitive graphs with regularity k, Information Processing Letters 109 (2009) 683 - 686] shown that a connected half vertex transitive graph with regu...Tian and Meng in [Y. Tian and J. Meng, λc -Optimally half vertex transitive graphs with regularity k, Information Processing Letters 109 (2009) 683 - 686] shown that a connected half vertex transitive graph with regularity k and girth g(G) ≥ 6 is cyclically optimal. In this paper, we show that a connected half vertex transitive graph G is super cyclically edge-connected if minimum degree δ(G) ≥ 6 and girth g(G) ≥ 6.展开更多
The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of length...The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of lengths 4,6,8,and 10 are analyzed. Then these cycles are classified into sixteen categories,each of which can be expressed as an ordered block sequence,or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fpwho has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner(5,7) QC LDPC codes.展开更多
This paper investigates the formation control of a class of multi-agent systems moving on a circle, whose topology is a cyclic graph, and presents several new results for the following two cases: Case I, the agents wi...This paper investigates the formation control of a class of multi-agent systems moving on a circle, whose topology is a cyclic graph, and presents several new results for the following two cases: Case I, the agents with single-integrator kinematics,and Case II, the agents with double-integrator kinematics. Firstly,for Case I, two control protocols are proposed under which the multiagent systems keep a uniformly-spaced formation. Secondly,we study Case II, and a control protocol is designed for this case, then the stability of the formation is proved. Finally, three simulations are studied by using our presented results. The study of illustrative examples with simulations shows that our results as well as designed control protocols work very well in studying the formation control of this class of multi-agent systems.展开更多
基金supported by the National Natural Science Foundation of China under Grant 71671103
文摘It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph(DAG). However, steady directed cyclic graphs(DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph(S-DUCG), and thus defines a new Bayesian Network with steady DCGs. The so-called single-valued means that only the causes of the true state of a variable are specified, while the false state is the complement of the true state.
基金Supported by the National Natural Science Foundation of China(11171273) Supported by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical Uni- versity(Z2016170)
文摘A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of order n. Furthermore, we determine the first three unicycles and bicyclic, C_4-free graphs whose spectral radius of the signless Laplacian is maximal. Similar results are obtained for the(combinatorial)
基金supported by the National Natural Science Foundation of China(No.11271275)the Foundation of the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘We provide some exact formulas for the projective dimension and regularity of edge ideals associated to some vertex-weighted oriented cyclic graphs with a common vertex or edge.These formulas axe functions in the weight of the vertices,and the numbers of edges and cycles.Some examples show that these formulas are related to direction selection and the assumption that w(x)≥2 for any vertex x cannot be dropped.
文摘We prove that a CP matrix A having cyclic graph has exactly two minimal rank 1 factorization if det M(A) > 0 and has exactly one minimal rank 1 factorization if detM(A) = 0.
文摘Let G be a simple graph. The cyclic bandwidth sum problem is to determine a labeling of graph G in a cycle such that the total length of edges is as small as possible. In this paper, some upper and lower bounds on cyclic bandwidth sum of graphs are studied.
文摘A total coloring of a graph G is a functionsuch that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. A k-interval is a set of k consecutive integers. A cyclically interval total t-coloring of a graph G is a total coloring a of G with colors 1,2,...,t, such that at least one vertex or edge of G is colored by i,i=1,2,...,t, and for any, the set is a -interval, or is a -interval, where dG(x) is the degree of the vertex x in G. In this paper, we study the cyclically interval total colorings of cycles and middle graphs of cycles.
基金The NSF (60776810,10871205) of Chinathe NSF (08JCYBJC13900) of Tianjin
文摘All graphs are finite simple undirected and of no isolated vertices in this paper. Using the theory of coset graphs and permutation groups, it is completed that a classification of locally transitive graphs admitting a non-Abelian group with cyclic Sylow subgroups. They are either the union of the family of arc-transitive graphs, or the union of the family of bipartite edge-transitive graphs.
基金Supported by National Key Fundamental Research and Development Project of P. R. China (2002CB312200)
文摘Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind of cyclic reconfigurable flow shops are proposed for the new manufacturing paradigm-reconfigurable manufacturing system. The cyclic reconfigurable flow shop is modeled as a timed event graph. The optimal configuration is defined as the one under which the cyclic reconfigurable flow shop functions with the minimum cycle time and the minimum number of pallets. The optimal configuration, the minimum cycle time and the minimum number of pallets can be obtained in two steps.
文摘An orthogonal double cover (ODC) of a graph H is a collection of subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC G of H is cyclic (CODC) if the cyclic group of order is a subgroup of the automorphism group of G. In this paper, we introduce a general orthogonal labelling for CODC of circulant graphs and construct CODC by certain classes of graphs such as complete bipartite graph, the union of the co-cycles graph with a star, the center vertex of which, belongs to the co-cycles graph and graphs that are connected by a one vertex.
文摘Tian and Meng in [Y. Tian and J. Meng, λc -Optimally half vertex transitive graphs with regularity k, Information Processing Letters 109 (2009) 683 - 686] shown that a connected half vertex transitive graph with regularity k and girth g(G) ≥ 6 is cyclically optimal. In this paper, we show that a connected half vertex transitive graph G is super cyclically edge-connected if minimum degree δ(G) ≥ 6 and girth g(G) ≥ 6.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61372074 and 91438101)the National High Technology Research and Development Program of China(Grant No.2015AA01A709)
文摘The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of lengths 4,6,8,and 10 are analyzed. Then these cycles are classified into sixteen categories,each of which can be expressed as an ordered block sequence,or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fpwho has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner(5,7) QC LDPC codes.
基金supported by the National Natural Science Foundation of China(G61374065,61373081,61303007,61401260,61503225,61572298)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Natural Science Foundation of Shandong Province(ZR2015FQ003)
文摘This paper investigates the formation control of a class of multi-agent systems moving on a circle, whose topology is a cyclic graph, and presents several new results for the following two cases: Case I, the agents with single-integrator kinematics,and Case II, the agents with double-integrator kinematics. Firstly,for Case I, two control protocols are proposed under which the multiagent systems keep a uniformly-spaced formation. Secondly,we study Case II, and a control protocol is designed for this case, then the stability of the formation is proved. Finally, three simulations are studied by using our presented results. The study of illustrative examples with simulations shows that our results as well as designed control protocols work very well in studying the formation control of this class of multi-agent systems.